A CROSS-SECTIONAL EXAMINATION OF HIV, AGING, AND CHRONIC HEALTH CONDITIONS AMONG GAY AND BISEXUAL MEN

Kiffer G. Card¹,²,³, Nathan J. Lachowsky²,³, Heather L. Armstrong²,⁴, Zishan Cui², Paul Sereda², Chad Dickie⁴, Terry Howard⁶, Eric A. Roth⁶, Robert S. Hogg¹,², David Moore²

¹Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
²British Columbia Centre for Excellence in HIV/AIDS, Vancouver, British Columbia, Canada
³School of Public Health and Social Policy, University of Victoria, Burnaby, British Columbia, Canada
⁴Engage Study, Toronto, Ontario, Canada
⁵Canadian HIV Cure Enterprise, Montreal, Quebec, Canada
⁶Anthropology, University of Victoria, Victoria, British Columbia, Canada

*Corresponding author: Kiffer G. Card: kcard@sfu.ca

ABSTRACT

Purpose
The purpose of this study was to evaluate the association between HIV status and the presence of chronic health conditions among gay and bisexual men (gbMSM). Most existing on this topic studies fail to account for behavioral factors—such as smoking and alcohol consumption—or focus on the general population without attention to the unique circumstances of gbMSM.

Methods
Sexually active gbMSM, aged ≥16 years, were recruited using respondent-driven sampling (RDS) between February 2012 and February 2015. HIV serology confirmed the HIV status. Chronic health conditions were classified into one of six broader categories (i.e., cardiovascular, cancer, gastrointestinal, respiratory, mental health, and other). Logistic regression models tested whether HIV status was associated with any of the six categories. All these models used an interaction term between HIV status and age, and adjusted for race/ethnicity, annual income, body mass index, daily smoking, and “risky drinking”.

J Mens Health Vol 16(3):e60–e74; 03 September 2020
This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License. ©2020 Kiffer G. Card et al.
Cross-sectional examination of HIV, aging, and chronic health among gbMSM

Results
Overall, 223 HIV-positive gbMSM and 551 HIV-negative gbMSM reported histories of cardiovascular disease (16.1%), cancer (5.1%), gastrointestinal illness (7.2%), respiratory problems (16.1%), mental health conditions (49.2%), and “other” co-/morbidities (13.1%). Compared with older HIV-negative gbMSM, those with HIV were more likely to report cardiovascular (aOR = 1.15, 95% CI: 1.07, 1.24) and respiratory (aOR = 1.08, 95% CI: 1.02, 1.14) disease. There were no differences by HIV status for other co-/morbidities.

Conclusion
Findings support the need for increased resources focused on aging, HIV, and cardiovascular and respiratory health among gbMSM aging with HIV.

Keywords: aging; comorbidities; chronic health; gay and bisexual men; people living with HIV

INTRODUCTION

The expansion of antiretroviral therapy has contributed to sustained decreases in HIV-related morbidity and mortality.1 Where antiretroviral therapy is accessible, the life expectancy of people living with HIV (PLWH) is now approaching that of the general population.2,3 As such, there has been a shift in morbidity and mortality among PLWH, with an increasing number of deaths attributed to non-HIV-related causes.4,5 HIV is now widely considered as a chronic disease6—complicated, of course, by other chronic health conditions7,8 and the aging population of PLWH.9,10

This shift in the epidemic has significantly improved the life expectancy of gay, bisexual, and other men who have sex with men (gbMSM) living in developed countries, who in addition to accounting for the majority of the epidemic in these areas11,12 are also subject to many other disparitites.13 For instance, gbMSM are reported at elevated risk for cardiovascular disease,14 certain cancers,15 respiratory and gastrointestinal health problems,16 and mental health problems.17,18 Contextualizing these disparities, Meyer’s minority stress theory posits that gbMSM are subjected to unique stressors associated with their stigmatized status.19 Syndemics theory has also been used to highlight the ways in which psychological distress, driven by overlapping and reinforcing structural drivers contributes to biological degradation.20 In one potential causal pathway, these stressors are hypothesized to contribute to maladaptive coping and physiological degradation, thereby inhibiting normal immune response and healthy bodily function.21–23

gbMSM with HIV experience additional stressors associated with HIV-related trauma,24 stigma,25 infection,26 and treatment side-effects27—though pharmaceutical advancements have significantly improved the safety and tolerability of contemporary antiretroviral therapy regimens.28,29 Yet, research comparing general populations of PLWH to those without HIV has shown that they are at increased risk for cause-specific and all-cause mortality.2 Further, HIV infection is associated with worse health-related quality of life and with a higher prevalence of other co-/morbidities.9,30–32 However, most analyses assessing the relationship between HIV status and physical health have been conducted in the general population and therefore this intersection remains relatively unexamined among gbMSM.

Some evidence suggests that the additive effects of multiple overlapping minority statuses (e.g., being a sexual minority and living with HIV) may synergistically contribute to poorer health33—an insight also shared by investigations of syndemics (i.e., two or more co-occurring diseases
or conditions which act synergistically to promote poor health) among gbMSM.20,34,35 One pathway by which these proposed stressors could contribute to poorer health is through increased substance use, including consumption of tobacco, alcohol, or other drugs.36–38 Indeed, people living with HIV are at increased risk for substance use.39,40 Therefore, the health disparities associated with HIV infection may be largely attributable to other behavioral factors such as tobacco or alcohol use.38

While several general population studies have taken into account the role of lifestyle factors,41–45 studies investigating chronic health among gbMSM have not always accounted for this factor. This is frequently because studies based on administrative data do not always aggregate by sexual orientation as well as limitations in administrative and medical record datasets. For example, Patel et al.46 reported that cancer was associated with HIV infection. However, as they were not able to measure behavioral factors such as smoking, they concluded that “because the prevalence of smoking varies among specific groups in the United States (for example, by sex, race, or HIV risk), some characteristics associated with cancer in our analyses may have been surrogates for smoking status” (p. 734). In other words, these lifestyle factors may play a confounding role in the association between HIV and poorer chronic health—particularly when considering gbMSM who report higher rates of smoking and alcohol consumption compared to the general population.46,47

Further, increased awareness and sensitivity to HIV health concerns among gbMSM, operationalized through social and medical supports, ameliorate some of the health disparities associated with HIV.48,49 Indeed, healthcare access is an important antecedent to the prevention, diagnosis, and treatment of co-/morbidity.50 Regardless of which hypothesis proves most salient, the intersection between HIV status and chronic health conditions among gbMSM is an important research area to assess, especially as more PLWH are surviving into older age. We designed a study to provide respondent-driven sampling (RDS)-adjusted estimates of chronic health conditions and to examine the association between HIV status, aging, and these chronic health conditions among gbMSM in Metro Vancouver.

Methods

Study protocol

Participants were enrolled into the Momentum Health Study, a prospective cohort of sexually active gbMSM, aged \textgreater 16 years, residing in Metro Vancouver, Canada. Baseline cross-sectional data, collected between February 2012 and February 2015, were used. Participants were recruited through RDS.51 Individuals presenting RDS coupons were screened for eligibility and provided written informed consent before completing a computer-administered questionnaire in English. The RDS was selected as it is now a widely accepted gold standard for gathering point estimates that are more representative of hidden and hard to reach populations, such as gbMSM.51 Also, RDS leverages participant networks to reach diverse participants and uses sample weights to adjust for unequal probabilities of recruitment arising from network characteristics.51 The study questionnaire was used to collect demographic, psychosocial, and behavioral variables. Upon completion of the survey, participants completed a short interview with a study nurse wherein they completed a brief medical history and underwent serology for HIV, Hepatitis C, and syphilis and specimen collection for other sexually transmitted infections. Participants received a $50 honorarium for the study visit and $10 for each eligible participant they recruited into the study.

Ethics, consent, and permissions

Ethics approval was granted by the research ethics boards at Simon Fraser University, the University of British Columbia, and the University of Victoria. All participants provided informed consent.
Dependent variables
Participants were asked, “have you ever been told by a doctor that you have any of the following chronic diseases or conditions?” and were provided with a list of conditions as well as the opportunity to provide free-field text for other chronic health conditions that are not assessed. Response items were broadly categorized into six categories: cardiovascular (i.e., coronary artery disease/angina, congestive heart failure, high blood pressure, high cholesterol, stroke or transient stroke), cancer (e.g., leukemia, prostate), gastrointestinal (i.e., stomach ulcers), respiratory (i.e., asthma, chronic bronchitis or chronic obstructive pulmonary disorder), mental health (i.e., anxiety, depression, bipolar, schizophrenia), and “other” (i.e., diabetes, chronic kidney disease, enlarged prostate) co-/morbidities. If the free-field text were relevant to one of the defined categories, then they were reclassified (e.g., “colitis”, “Crohn’s”, or “gastroesophageal reflux disease” were classified under the gastrointestinal category).

Independent variables
We compared participants by HIV status based on serological tests. The primary exposure variable was an interaction term between HIV status and age. This was hypothesized a priori given that most co-/morbidities do not present until middle and older age. Potential confounders considered in this analysis included age (continuous), race/ethnicity (White, Asian, Aboriginal, other), annual income in Canadian dollars (<$30,000, ≥$30,000), body mass index (BMI; <25, ≥25), whether the participant smoked daily (i.e., “On average, how many cigarettes do you smoke on a typical day?”: dichotomized as 0, ≥1), and whether they engaged in “risky drinking” (defined by the Alcohol Use Disorders Identification Test AUDIT with scores ≥16). We note that clinical cut-offs for the AUDIT scale frequently promote intervention with scores greater than 7. However, based on sensitivity analyses, higher baseline prevalence of alcohol use and binge drinking among gbMSM, and focusing on increasing specificity of identifying chronic health conditions, we selected a cut point that discriminated between harmful/dependent use and low-risk/risky use. That said, we recommend that intervention-based studies in clinical settings should continue to use the cut-score of 8 to investigate potential problems related to alcohol use.

Statistical analysis
All statistical analyses were performed in SAS v.9.4. All analyses were RDS-adjusted using RDSAT v.7.1.46. Logistic regression was used to show the bivariable association between HIV-status and any of the disease categories described above (i.e., cardiovascular, cancer, gastrointestinal, respiratory, mental health, other), as well as age and all potential confounders. Multivariable confounding models (i.e., logistic regression models controlling for confounding variables) for each health category were constructed with the interaction between HIV status and age as main exposure, controlling for race/ethnicity, annual income, body mass index, daily smoking, and risky drinking. As our primary explanatory variable tested an interaction term, we also calculated the age at which the association between HIV status and co-/morbidities reversed/inflected. For each model described above, two-sided tests were used and considered significant if P < 0.05.

RESULTS
Data from 223 HIV-positive gbMSM and 551 HIV-negative gbMSM were collected. Crude and RDS-adjusted descriptive statistics, stratified by HIV status, are provided in Table 1. Overall, the sample was predominantly white, had annual incomes <$30,000, and had a median age of 34 years (Q1, Q3:26, 47). Almost half of the sample (49.1%) reported “fair” or “poor” overall physical health, 35.1% reported “good” health, and 15.8% reported “very good” or “excellent” health. One-third (32.8%) of men had a body mass index ≥25.
TABLE 1 RDS-Adjusted Descriptive Statistics and Univariate Associations with HIV Status

<table>
<thead>
<tr>
<th></th>
<th>gbMSM without HIV (n = 551)</th>
<th>gbMSM with HIV (n = 223)</th>
<th>Univariate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Frequency</td>
<td>RDS%</td>
<td>Frequency</td>
</tr>
<tr>
<td>Age (Median in years, Q1, Q3)</td>
<td>Median: 30</td>
<td>(Q₁, Q₃): 24, 39</td>
<td>Median: 47</td>
</tr>
<tr>
<td>Race/Ethnicity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>412</td>
<td>69.5</td>
<td>173</td>
</tr>
<tr>
<td>Asian</td>
<td>61</td>
<td>10.2</td>
<td>13</td>
</tr>
<tr>
<td>Aboriginal</td>
<td>27</td>
<td>6.8</td>
<td>23</td>
</tr>
<tr>
<td>Other</td>
<td>51</td>
<td>13.5</td>
<td>14</td>
</tr>
<tr>
<td>Annual income (CAD)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Less than $30,000</td>
<td>325</td>
<td>68.1</td>
<td>160</td>
</tr>
<tr>
<td>$30,000–$59,999</td>
<td>226</td>
<td>31.9</td>
<td>63</td>
</tr>
<tr>
<td>Self-rated overall physical health</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fair/Poor</td>
<td>321</td>
<td>54.7</td>
<td>110</td>
</tr>
<tr>
<td>Good</td>
<td>172</td>
<td>32.3</td>
<td>71</td>
</tr>
<tr>
<td>Very good/Excellent</td>
<td>56</td>
<td>13.1</td>
<td>40</td>
</tr>
<tr>
<td>Doctor-diagnosed health conditions (Yes vs No)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>80</td>
<td>14.1</td>
<td>60</td>
</tr>
<tr>
<td>Cancer</td>
<td>17</td>
<td>3.2</td>
<td>26</td>
</tr>
<tr>
<td>Gastrointestinal</td>
<td>41</td>
<td>6.9</td>
<td>17</td>
</tr>
<tr>
<td>Respiratory</td>
<td>84</td>
<td>15.0</td>
<td>31</td>
</tr>
<tr>
<td>Mental Health</td>
<td>202</td>
<td>43.0</td>
<td>140</td>
</tr>
<tr>
<td>Other</td>
<td>70</td>
<td>13.2</td>
<td>29</td>
</tr>
<tr>
<td>Body mass index</td>
<td>182</td>
<td>30.6</td>
<td>83</td>
</tr>
<tr>
<td>(≥ 25 vs <25)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Daily smoking (Yes vs No)</td>
<td>122</td>
<td>26.3</td>
<td>66</td>
</tr>
<tr>
<td>Risky drinking (AUDIT)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low risk (0–7)</td>
<td>296</td>
<td>56.7</td>
<td>165</td>
</tr>
<tr>
<td>Medium risk (8–15)</td>
<td>171</td>
<td>27.9</td>
<td>33</td>
</tr>
<tr>
<td>Harmful/Possible dependence (≥16)</td>
<td>83</td>
<td>15.4</td>
<td>21</td>
</tr>
</tbody>
</table>

Bold values indicate \(P < 0.05 \).

RDS = Respondent-driven sampling; OR = odds ratio; CI = Confidence interval; AUDIT = Alcohol Use Disorder Identification Test; CAD = Canadian dollars.
Daily smoking was reported by 31.5% of men (95% CI: 25.4%, 37.6%) and 13.4% (95% CI: 8.7%, 17.7%) of men were classified by the alcohol use disorder identification test as “harmful/possibly dependent” drinkers.

A total of 16.7% (95% CI: 12.0%, 21.6%) gbMSM reported having ever had a cardiovascular health condition, 5.1% (95% CI: 2.9%, 7.6%) reported a cancer diagnosis, 7.2% (95% CI: 4.9%, 10.0%) reported diagnosis of a gastrointestinal health condition, 16.1% (95% CI: 11.7%, 20.8%) reported diagnosis of a respiratory health condition, 49.2% (95% CI: 43.3%, 55.5%) reported a mental health diagnosis, and 13.3% (95% CI: 9.3%, 17.9%) reported a diagnosed health condition classified in this study as “other”. Overall, we observed that the reported doctor diagnoses increased with age. In the older age groups (i.e., 60–64, 65+), cardiovascular disease, respiratory disease, and “other” conditions were the most commonly reported comorbidities.

Compared with HIV-negative gbMSM, gbMSM living with HIV were older (OR: 1.09, 95% CI: 1.07, 1.11). In fact, the median age of HIV-positive men was 17 years higher (HIV-negative men: median = 30, Q1 = 24, Q3 = 39 vs HIV-positive men: median = 47, Q1 = 39, Q3 = 53). Figure 1 shows the age distribution of the sample stratified by HIV status. In addition to being older, gbMSM with HIV were also more likely to be indigenous (OR: 2.24, 95% CI: 1.07, 1.11), had lower annual incomes (OR: 0.66, 95% CI: 0.44, 0.98), reported better subjective physical health overall (very good/excellent vs fair/poor, OR: 1.71, 95% CI: 1.04, 2.79), and had lower alcohol use disorder identification test scores. HIV-positive men did not differ with regards to daily smoking (OR: 1.11, 95% CI: 0.76, 1.64) or body mass index (OR: 1.21, 95% CI: 0.84, 1.73).

Table 2 provides the multivariable results testing an association between each co-/morbidity category and the included interaction between age and HIV status. The age at which associations inflect is also provided—most of which occur in the participant’s late 40s or early 50s. Stratified odds ratios for the association between diagnoses and age are

![FIGURE 1](image-url)
FIGURE 1 Age distribution for gbMSM in the momentum health study.
TABLE 2 Multivariable Results for Each Chronic Health Condition Category

<table>
<thead>
<tr>
<th>HIV-status x age</th>
<th>Cardiovascular aOR (95% CI)</th>
<th>Respiratory aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youngest (18): HIV + vs -</td>
<td>1.15 (1.07, 1.24)</td>
<td>1.08 (1.02, 1.14)</td>
</tr>
<tr>
<td>Young (26): HIV + vs -</td>
<td>0.01 (0.00, 0.14)</td>
<td>0.10 (0.02, 0.58)</td>
</tr>
<tr>
<td>Mid (34): HIV + vs -</td>
<td>0.03 (0.01, 0.24)</td>
<td>0.18 (0.05, 0.71)</td>
</tr>
<tr>
<td>Old (47): HIV + vs -</td>
<td>0.11 (0.03, 0.42)</td>
<td>0.33 (0.13, 0.89)</td>
</tr>
<tr>
<td>Oldest (80): HIV + vs -</td>
<td>0.67 (0.36, 1.24)</td>
<td>0.89 (0.50, 1.59)</td>
</tr>
</tbody>
</table>

Oldest (80): HIV + vs - | 68.76 (6.65, 710.95) | 10.75 (1.77, 65.21) |

Age association inflects | 49.91 | 48.50 |

<table>
<thead>
<tr>
<th>HIV-status x age</th>
<th>Mental health aOR (95% CI)</th>
<th>Gastrointestinal aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youngest (18): HIV + vs -</td>
<td>0.98 (0.95, 1.02)</td>
<td>1.04 (0.97, 1.11)</td>
</tr>
<tr>
<td>Young (26): HIV + vs -</td>
<td>2.21 (0.77, 6.41)</td>
<td>0.43 (0.05, 3.53)</td>
</tr>
<tr>
<td>Mid (34): HIV + vs -</td>
<td>1.96 (0.89, 4.33)</td>
<td>0.57 (0.12, 2.84)</td>
</tr>
<tr>
<td>Old (47): HIV + vs -</td>
<td>1.74 (1.00, 3.02)</td>
<td>0.76 (0.24, 2.41)</td>
</tr>
<tr>
<td>Oldest (80): HIV + vs -</td>
<td>1.42 (0.92, 2.20)</td>
<td>1.22 (0.54, 2.73)</td>
</tr>
</tbody>
</table>

Oldest (80): HIV + vs - | 0.86 (2.20, 3.66) | 4.00 (0.31, 50.98) |

Age association inflects | 70.32 | 41.54 |

<table>
<thead>
<tr>
<th>HIV-status x age</th>
<th>Cancer aOR (95% CI)</th>
<th>Other aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youngest (18): HIV + vs -</td>
<td>0.99 (0.92, 1.07)</td>
<td>1.04 (0.98, 1.10)</td>
</tr>
<tr>
<td>Young (26): HIV + vs -</td>
<td>1.88 (0.16, 22.52)</td>
<td>0.18 (0.03, 1.18)</td>
</tr>
<tr>
<td>Mid (34): HIV + vs -</td>
<td>1.72 (0.25, 11.83)</td>
<td>0.24 (0.06, 1.04)</td>
</tr>
<tr>
<td>Old (47): HIV + vs -</td>
<td>1.58 (0.39, 6.41)</td>
<td>0.33 (0.11, 0.95)</td>
</tr>
<tr>
<td>Oldest (80): HIV + vs -</td>
<td>1.37 (0.62, 3.04)</td>
<td>0.55 (0.30, 0.98)</td>
</tr>
</tbody>
</table>

Oldest (80): HIV + vs - | 0.96 (0.09, 10.4) | 1.98 (0.32, 12.29) |

Age association inflects | 76.80 | 62.43 |

<table>
<thead>
<tr>
<th>HIV-status x age</th>
<th>Cancer aOR (95% CI)</th>
<th>Other aOR (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Youngest (18): HIV + vs -</td>
<td>1.07 (1.04, 1.10)</td>
<td>1.06 (1.04, 1.08)</td>
</tr>
<tr>
<td>Young (26): HIV + vs -</td>
<td>1.06 (0.99, 1.13)</td>
<td>1.10 (1.04, 1.16)</td>
</tr>
</tbody>
</table>

Bold values indicate P < 0.05.

Adjusted for ethnicity, income, BMI, tobacco use, and alcohol use.
also reported separately for gbMSM with and without HIV. Visualizing these results, Figure 2 shows a series of interaction plots showing the log odds of each health condition comparing older and younger gbMSM, by HIV status. These results show that the HIV status/age interaction term is positively associated with cardiovascular (aOR = 1.15, 95% CI: 1.07, 1.24) and respiratory (aOR = 1.08, 95% CI: 1.02, 1.14) diagnoses. Meanwhile, the interaction terms were not significant in the models assessing cancer.

FIGURE 2 Log-odds probability of each outcome from minimum to maximum age (18 to 80). * indicates statistically significant interaction.
In agreement with these findings, the present study demonstrates that while younger HIV-positive gbMSM may enjoy a level of health compared with that of HIV-negative men, HIV-related disparities in these health categories begin to emerge after middle age. Contextualizing these patterns, it appears that while younger gbMSM living with HIV are attentive to their health needs—taking the necessary steps to promote and maintain their health and well-being—lifestyle factors do not altogether prevent the onset of chronic health conditions later in life. One pathway by which HIV might contribute to poorer cardiovascular and respiratory health is through persistent inflammation and immune activation—factors that might be associated with structural syndemic experienced by gbMSM as well as minority stressors that impact people living with HIV. This may be partially attributable to a cohort effect, where older gbMSM who were treated under previous clinical regimens are now experiencing the long-term side-effects of these medications as they age. Alternatively, these findings may suggest that event detection of chronic health conditions is simply higher among gbMSM living with HIV. Indeed, as no causal mechanisms for increased co-/morbidity among older gbMSM with HIV were assessed in the present analysis, it is not clear which of these mechanisms may account for these findings. Future longitudinal analyses will need to assess these trends.

Another important factor to consider is the role that HIV medications might play in the physical health of gbMSM aging with HIV. Indeed, HIV medications have been recently documented as potential risk factors for several adverse chronic health conditions, including neurological disorders, diabetes, heart disease, kidney disease, and cancer. However, recent research has shown that early adherence to contemporary antiretroviral therapy regimens may reduce the risk for some co-/morbidities (e.g., cancer), suggesting that early initiation may be one strategy to improve the health of PLWH with the caveat that other co-/morbidities.
are closely monitored and treated appropriately. However, despite improved safety and tolerability of current HIV medications, additional research is needed to support the health of aging gbMSM who have successfully adhered to antiretroviral therapies for long periods.

Strengths and limitations

The present study offers several methodological strengths. First, the present study reports the association between HIV status, age, and several categories of co-/morbid health problems, providing a broad view of the phenomena under examination. Our analysis includes both HIV-negative and HIV-positive gbMSM of all ages, providing a unique opportunity to evaluate the contributions of age and HIV status to chronic health issues. Second, the use of RDS weightings allows for more representative population parameters within a study population with limitations to using gold standard random sampling. Finally, as many previous studies have not accounted for important chronic-disease risk-factors (e.g., smoking), the present study shows that the association between HIV status and other chronic health conditions persists even after accounting for primary lifestyle and behavioral factors often associated with comorbid health outcomes.

We should note, however, that while previous studies have shown that HIV-positive gbMSM are more likely to report substance use, the HIV-positive men in the present analysis were not more likely to report daily smoking, actually had lower alcohol use disorder identification test scores, and reported better subjective physical health than other gbMSM—though, regarding this last point, we should not necessarily assume that subjective health ratings are comparable between gbMSM living with HIV and those who are not. Indeed, gbMSM living with HIV may have a lower baseline expectation for their well-being. Alternatively, gbMSM with HIV may engage in greater levels of care thus allowing for primary prevention of chronic illness. Readers should also be aware of several limitations inherent to the present study. First, our measure of chronic disease relied on reported doctor diagnoses rather than objective measures of the disease. Therefore, it is impossible to ascertain the temporal ordering or etiology of the relationships between various health diagnoses and the factors explored here. For example, we do not know whether the explanatory factors assessed here are presented before or after the chronic health conditions. Further, these observed associations may occur due to better event detection among older and HIV-positive gbMSM, who are often more engaged in healthcare than younger and HIV-negative gbMSM. Further, the use of categorical measures representing multiple chronic health conditions may obscure trends of specific chronic health conditions. Second, as the age structures were significantly different between gbMSM with and without HIV, and because there were fewer HIV-positive gbMSM enrolled in the study, we may not have had sufficient power to detect real differences in the health categories for which the null hypothesis was not rejected (i.e., those for which no significant difference was detected between HIV-positive and HIV-negative gbMSM). We strongly caution readers to be aware that the observed HIV-status-related differences, or lack thereof, in chronic health conditions may simply be an artifact of our sample composition and due to the differences in age for people living with and without HIV (i.e., the HIV-negative men in our sample may simply have yet to develop chronic health conditions). Third, as our sample is comprised of a predominantly gay, white, urban population—characteristics which have previously been linked to better health outcomes—it should not be taken to represent all gbMSM. Fourth, we note that we did not collect past histories of smoking or alcohol consumption. Given the long-term health impacts of some substance use consumption patterns, future studies should include a lifetime history of these lifestyle factors. Lastly, some associations may not be significant due to an already elevated prevalence
among gbMSM, as is the case with mental health, or due to the low overall prevalence of outcomes observed in this sample.

CONCLUSIONS

Our findings highlight how some well-documented health disparities among PLWH persists even after adjusting for known HIV risk factors (e.g., age, race/ethnicity, body mass index, smoking, drinking). In doing so, we emphasize the increasing importance that physical health and aging has and will undoubtedly continue to have in shaping the health of gbMSM. This is particularly true regarding the intersection between HIV, chronic health, and aging—emphasizing the need for additional research and resources dedicated to addressing this crucial intersection in gbMSM communities.

ACKNOWLEDGMENTS

The authors would like to thank the Momentum Health Study participants, office staff, and community advisory board, as well as our community partner agencies, Health Initiative for Men, YouthCO HIV & Hep C Society, and Positive Living Society of BC. Momentum is funded through the National Institute on Drug Abuse (R01DA031055-01A1) and the Canadian Institutes for Health Research (MOP-107544, FDN-143342, PJT-153139). NJL was supported by a CANFAR/CTN Postdoctoral Fellowship Award. DMM and NJL are supported by Scholar Awards from the Michael Smith Foundation for Health Research (#5209, #16863). HLA is supported by a Postdoctoral Fellowship Award from the Canadian Institutes of Health Research (Grant # MFE-152443). KGC is supported by a Canadian HIV Trials Network/Canadian Foundation for AIDS Research Postdoctoral Fellowship award, a Michael Smith Foundation for Health Research Trainee award, and a Canadian Institutes of Health Research Health Systems Impact Fellowship award.

CONFLICT OF INTEREST

No competing financial interests exist.

REFERENCES

Cross-sectional examination of HIV, aging, and chronic health among gbMSM

Cross-sectional examination of HIV, aging, and chronic health among gbMSM

63. Nou E, Lo J, Grinspoon SK. Inflammation, immune activation, and cardiovascular disease in HIV.