Original Research

Gonadal suppression alters axillary steroid secretions in men, but does that affect olfactory social signaling?

Syed Imran Ali Shah¹, *, Hannah C. P. Wilson¹, Paul D. Abel¹, Richard J. Wassersug², *, Vít Třebíčký³, ⁴, Jitka Třebíčká Fialová¹, ⁵, Caroline Allen⁶, Hans H. Adomat⁷, Robert H. Bell⁷, Emma S. Tomlinson Guns⁷, S. Craig Roberts⁸

¹Department of Surgery & Cancer, Imperial College London, SW7 1 London, UK
²Department of Cellular & Physiological Sciences, University of British Columbia, Vancouver, BC V6T, Canada
³National Institute of Mental Health, 250 67 Klecany, Czech Republic
⁴Faculty of Physical Education and Sport, Charles University, 120 00 Prague, Czech Republic
⁵Faculty of Science, Charles University, 120 00 Prague, Czech Republic
⁶School of Psychology, Newcastle University, NE2 4 England, UK
⁷Vancouver Prostate Centre, Vancouver, BC V4C, Canada
⁸Division of Psychology, University of Stirling, FK9 4 Scotland, UK

*Correspondence: s.shah10@alumni.imperial.ac.uk (Syed Imran Ali Shah); richard.wassersug@ubc.ca (Richard J. Wassersug)

Abstract

Background and objective: Luteinizing hormone-releasing hormone agonists (LHRHa) suppress gonadal hormone production and are commonly used to treat prostate cancer (PC) in men and conditions ranging from uterine fibroids to estrogen-sensitive cancers in women. They are also used to delay sexual development in children considering gender reassignment or experiencing premature puberty. As chemically castrating agents, LHRHa may affect cutaneous steroid secretions, which, in turn, could alter body odor and influence the psycho-sexual dynamics between individuals. The objectives of the present study were to determine (1) if LHRHa indeed alter cutaneous skin secretions, and (2) whether this leads to perceivable changes in body odor.

Material and methods: Axillary skin secretions were collected on new cotton T-shirts worn by men undergoing androgen deprivation therapy with an LHRHa to treat PC (n = 10), both before starting the LHRHa and 3 months later. Healthy heterosexual university students (50 males, 50 females) were recruited to smell and rate the shirts for their masculinity, attractiveness, and intensity of odor. Liquid chromatography-mass spectrometry (LC-MS) was also used to analyze steroids extracted from the shirt samples.

Results: LC-MS showed a statistically significant decline in the concentration of the androgenic metabolites, androsterone and 5α-androstane-3,17-dione. This confirms that LHRHa drugs that suppress gonadal hormone production markedly reduce cutaneous secretion of androgenic metabolic intermediates in adult males. However, no differences in odor were detected in the ratings of the shirts by male, female, nor male and female raters combined for any of the three variables assessed. Possible reasons why the human sniffers failed to perceive a change in odor are explored.

Conclusion: Our data document that LHRHa alter steroid skin secretions in older men, but whether such changes alter the olfactory signals that might influence psychosocial interactions remains unresolved.

Keywords
Prostate cancer; Androgen deprivation therapy; Scent; Olfaction; Social implications

1. Introduction

Luteinizing hormone-releasing hormone agonists (LHRHa) are a class of synthetic hormones that reduce endogenous gonadal hormone production in both men and women through the modulation of the hypothalamic-pituitary-gonadal axis. LHRHa induced continuous, non-physiological stimulation of the pituitary gland eventually leads to downregulation of
pituitary luteinizing hormone-releasing hormone (LHRH) receptors. Through a negative feedback mechanism, this causes subsequent reduction in luteinizing hormone (LH) production and gonadal hormone synthesis [1]. LHRHαs are thus used clinically to treat gonadal hormone-sensitive medical conditions. For men, they are the most common agent used for androgen deprivation therapy (ADT) in the treatment of prostate cancer (PC) [2]. In women they are used to treat a variety of conditions such as uterine fibroids, endometriosis, and gonadal hormone-sensitive cancers. They are also used to delay sexual development in children considering gender-affirming therapy (GAT) or experiencing premature puberty [3].

We explore here the impact of LHRHα administration on steroid skin secretions focusing on men with PC receiving LHRHα for ADT. LHRHα reduce serum testosterone (T) levels by >90% in men. Since estradiol (E2) in males is derived directly from T by the enzyme aromatase, LHRHα also reduce the E2 levels by some 80% [4]. This iatrogenic hypogonadism leads to complications, some of which, like erectile dysfunction, loss of libido, and decreased muscle mass, are attributable to low T. Others, such as osteoporosis and hot flashes, are primarily due to E2 deficiency [5, 6].

ADT’s adverse effects on men’s sexual function reduce patients’ masculine self-esteem and quality of life (QoL) [7, 8]. T is a social hormone [9] and, as such, its impact on men indirectly affects their intimate partners [10]. The partners of patients on ADT may in fact be more distressed than the patients themselves [11, 12]. A small (n = 15) interview based study of men receiving ADT revealed that nearly half experienced erosion of spousal relations, which was not limited to intimate sexual contact, but also affected other aspects of their social relationships [13].

In most mammals, olfaction is the dominant sensory modality in social communication [14, 15]. Humans possess the ability to perceive socially relevant information from chemical signaling, which varies from individual to individual [16]. Different areas of the human body have characteristic odors. Of these, axillary scent is most pungent and generally considered the primary source of body odor. Axillary odor is affected by an individual’s genetics, ethnicity, sex, personality, sexual orientation, diet and health [17, 18]. Exposure to axillary apocrine secretion from conspecific individuals has been shown to elicit psychological and physiological responses [19]. It is thus possible that relationship changes for patients on LHRHαs and their partners may be affected by changes in the chemical signal that patients emit.

Perception of a male’s scent contributes to women’s assessments of partners, providing cues about a potential partner’s health, reproductive status, and genetic quality [20]. Perceived pleasantness of male axillary scent is also positively associated with measures of male masculinity and dominance [21], as well as underlying T levels [22]. The axillary chemical signals from men may change with age [23], but it is not yet known whether this is due to age-related variations in their sex hormone profile. It is in fact not known whether LHRHαs significantly alters cutaneous axillary secretions in PC patients or other populations treated with gonadal hormone suppressing drugs. Similarly, it is not known whether any such changes influence the olfactory signals patients emit in a way that might impact on their intimate relationships.

Axillary apocrine secretions contain various odoriferous volatile chemicals [20]. Some, such as the androstenes, are intermediate products in the metabolic conversion of cholesterol to the primary sex hormones and are variously aromatic [14, 24]. Androstenes have been shown to act as chemosignals that can influence human behavior in multiple ways such as sexual interest, attraction, mood, emotions and possibly mate selection [25–29]. These observations raise the question of whether some component of the erosion of spousal relations for PC patients on LHRHαs drugs may be the result of changes in the olfactory signal emitted by androgen suppressed patients.

In this study we address two questions. First, does ADT achieved with LHRHαs change the excreted cutaneous steroids from the axillary region of PC patients compared to baseline? We also ask whether there is any perceivable difference in the auxillary scent of men on ADT compared again to baseline and to age-matched controls with normal levels of gonadal hormones.

2. Methods

2.1 General sample collection

We collected samples of axillary secreted steroids absorbed on T-shirts worn by ten participants following an established protocol used previously in investigations of axillary scent [30–32].

A longitudinal design was employed. Study samples were provided by men between 50–75 years old from the uro-oncology clinics of Imperial College Healthcare NHS Trust. These men were all being treated for PC and about to begin ADT with an LHRHα drug (monthly subcutaneous Goserelin implant). The patients provided samples of axillary sweat and blood for serum T and E2 at baseline before starting hormone treatment and at three months after initiation of ADT. The patients received an anti-androgen (oral bicalutamide) one week before the administration of LHRHαs as per the routine clinical management to prevent the testosterone flare-up phenomenon. The patients did not have any history of the use of inhibitors of androgen biosynthetic enzyme cytochrome P450 17α hydroxylase/17, 20 lyase (CYP17), steroid medications or any other anti-cancer drug. An additional 10 age-matched men, without a diagnosis of PC, served as controls. The control participants also did not have any history of use of any steroidal pharmacologic agent. Their samples of axillary sweat and blood were also taken twice with a three-month interval. All samples were collected after approval as an Imperial College Healthcare Tissue Bank (ICHTB) sub-collection and were later issued for analysis following ICHTB ethics approval.

Materials provided to the study participants for axillary sample collection included the T-shirt (prewashed in non-

21

20

19

18

17

16

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0
perfumed detergent), a zip-lock plastic storage bag for the shirt, and a non-perfumed soap bar (Simple Pure soap bar, UK). Participants were required to wear the T-shirt overnight for two consecutive nights. They were asked to follow a set of instructions commencing 24 hours before sampling. This included abstinence from sexual activity, sleeping alone, avoiding deodorants and other perfumed products, wearing only the provided T-shirt while sleeping, avoiding tobacco smoke, alcohol and strong-smelling foods (e.g., chilli, garlic, pepperoni, curry, blue cheese, asparagus, yogurt and fried onion).

Subjects were required to shower just before retiring alone to bed on each of the two consecutive nights using only the soap provided, wearing the T-shirts in bed and returning them to the storage bag each morning. T-shirts were collected and stored at -80 °C on the day after the second night. Before long term storage, the bottom half of each T-shirt, below the rib cage, was discarded and the remaining part was cut into right and left halves which were stored separately in sealable plastic bags labelled in an anonymized form with key codes indicating only the group (PC or control) and the time point of sampling (baseline or 3 months).

Quantitative determination of serum T and E2 in venous blood samples from participants was carried out at Imperial Clinical Chemistry Laboratory, Charing Cross Hospital, London using ARCHITECT® assays (Abbott Laboratories, Abbott Park, Illinois, USA).

2.2 Olfactory assessment

The right halves were transported to the University of Stirling, Scotland, and immediately put into a -20 °C freezer. The next morning, the plastic bags containing the T-shirt samples were removed from the freezer and allowed to thaw for 2 hours at room temperature. Each bag was shaken thoroughly and inverted 3–4 times to uniformly distribute volatile compounds.

A group of 100 healthy heterosexual university students (50 women, 50 men, 17–34 years old with a mean age of 21.4 years) were recruited (after provision of study information and receiving written informed consent as approved by the University of Stirling Research Ethics Committee) to smell and rate individual samples for their masculinity, attractiveness, and intensity. Only women using hormonal contraception were recruited to rate the smell of the samples so as to avoid the potential effect of fluctuations in olfactory function during the natural menstrual cycle [33]. Participants rated samples on a 7-point scale (from 1-very low to 7-very high) and were also asked to complete a questionnaire on their basic demographic data (age, sex) and contraceptive history. Each participant on the olfactory assessment panel then smelled and rated a randomly allocated series of 8 T-shirt samples (baseline and 3-month samples from 2 controls and 2 PC patients each). Raters were blind to the identity of the samples and their responses were kept anonymous.

2.2.1 Statistical analysis

Data were statistically analyzed in an anonymized form. For each individual at the two time points, mean scores were computed for attractiveness, masculinity and intensity ratings by male raters, female raters, and all raters combined. The rating averages and serum sex hormones data were analyzed using SPSS version 22.0 (SPSS Inc., Chicago, IL, USA). Means ± standard error of mean (S.E.M) were calculated for normally distributed quantitative variables. Odor ratings were analyzed using repeated measures ANOVA, with odor sample (baseline, 3 month) as the within-subject factor and group (control, study) as the between-subject factor. If ADT influences men’s scent, we would predict a significant sample x group interaction in these models. Pearson’s correlation was applied to observe correlation between odor ratings and serum sex hormone levels. A P-value of < 0.05 was considered statistically significant.

2.3 Chemical assessment

The left side of the frozen T-shirts from the study group were shipped on dry ice to the Vancouver Prostate Centre in Canada. Included were two shirts that had not been worn and were in their original package as blank controls. All shirt samples were received while still on dry ice and immediately transferred to a -80 °C freezer.

Sixteen steroids, all metabolic derivatives of cholesterol, were extracted from the shirt samples as described below. Liquid chromatography-mass spectrometry (LC-MS) was performed on the extracted samples using the protocol described previously [34, 35]. 10 samples were from men with PC before treatment and an equal number of samples were from the same men after three months on ADT. This yielded a final sample of 22 shirts, ten before ADT and ten three months after starting ADT, plus two unworn control shirts.

2.3.1 Steroid extraction

A swatch of T-shirt fabric approximately 200 mg (weighed by differences) was placed into an 8 mL glass vial to which was added 5 mL ethyl acetate (EtOAc) and 20 μL internal standard (IS, deuterated testosterone, d3T, and dihydrotestosterone, d3DHT). Sample was rotated for 30 minutes and 4 mL extract transferred to a fresh vial. Extraction was repeated with an additional 4 mL EtOAc, pooled, and combined extracts dried under vacuum (Centrivap). Residue was taken up in 0.5 mL EtOAc and transferred to Eppendorf tubes, dried again, and 0.5 mL 100 mM hydroxylamine/methanol (HA/MeOH) added and then well vortexed. The sample was next centrifuged (20000 g, 2 min) and 45 μL supernatant transferred to a fresh Eppendorf followed by addition of 45 μL water. The sample was again vortexed, centrifuged and the supernatant transferred to LC sample vials with inserts and heated at 60 °C for 1 hour prior to LC-MS analysis.
2.3.2 LC-MS analysis

The oxime derivatized steroids generated in the extraction protocol were analyzed using a Waters Acquity UPLC Separations Module coupled to a Waters Quattro Premier XE Mass Spectrometer. Separations were carried out with a 2.1 × 100 mm BEH 1.7 μM C18 column, mobile phase water (A) and 0.1% formic acid in acetonitrile (B) (gradient: 0.2 min, 25%; 8 min, 70%; 9 min, 100%; 12 min 100%; 12.2 min, 25%; 14 min run length). All data were collected in ES+ by multireaction monitoring with instrument parameters optimized for the m/z’s and corresponding fragments of the oxime-steroids. Data processing was done with Quanlynx (Waters) and exported to Excel for additional normalization to weights and volumes as required. Final deuterated T and DHT levels in samples were 0.5 and 1 ng/mL respectively and a curve of 6 calibration standards (0.01–10 ng/mL) used for quantification (R2 > 0.98). All ketosteroids in the androgen pathway were in the assay. Parameters were also optimized for cortisol and epi-testosterone were included in the acquisitions.

2.3.3 Statistical analysis

The mean values for each steroid in ng/mL extracted from the shirts were assessed for normality with the Shapiro Wilks test. Only two of the 16 steroids had P-value greater than 0.1 indicative of a normal distribution. Normality did not improve when the data were log transformed. Thus, the data were considered non-parametric and compared with Wilcoxon rank sum test.

In order to assess correlations between shirts in one steroid concentration and another, the rank order of steroid concentrations was compared with Spearman’s coefficient ρ. A similar analysis was done for each participant as well as the two unworn shirt samples as blank controls. The steroid concentrations before and after ADT were treated as ratios in the final statistical analysis.

3. Results

3.1 Serum gonadal hormone levels

As expected, T levels were significantly lower in the study group serum samples at 3 months than had been recorded at baseline (Serum T nmol/L, Mean ± SEM; 16.56 ± 1.45 (baseline) vs. 0.64 ± 0.12 (3 months), P < 0.0001). Similarly, E2 levels in the study group at 3-months assessment were significantly lower than baseline (Serum E2 pg/mL, Mean ± SEM; 89.40 ± 8.44 (baseline) vs. 37.00 ± 0.00 (3 months), P < 0.0001). 37 pmol/L was the lowest detection limit of the E2 assay employed. No such change was observed over the three-month period in the T and E2 serum concentrations for control participants who were not treated with an LHRHa.

3.2 Olfactory assessment

No significant sample x group interactions were found in the ratings of either attractiveness, masculinity or intensity, whether the ANOVA model included assessments by male raters, female raters, or both male and female raters combined (Table 1).

3.3 Chemical assessment

The medians for the men in the study group at baseline and after three months of LHRHa administration along with the P values for the Wilcoxon test comparison are presented in Table 2. These are in rank order from those with the greatest to least significant differences. With α set at 0.05, only two of the seven androgenic steroids significantly differed in concentration between men before and after ADT. These were androsterone and 5α-androstane-3,17-dione. Both were significantly lower (median drop after ADT was to 51% and 48% from the pre-treatment levels respectively) in the cutaneous secretion of the men after 3 months of ADT (Wilcoxon signed rank test; both P = 0.02). Three more androgenic compounds had lower mean concentrations after three months of ADT, but not significantly so.

4. Discussion

Three months of ADT with LHRHa drugs alters the cutaneous steroid secretions in the axillary region of men when assessed with LC-MS. The shift is overall characterized by suppression of androgenic intermediates. Although ADT achieved with an LHRHa reduces gonadal steroid levels, production of mineralocorticoids and glucocorticoids is not suppressed indicating that their progestogen precursors are preserved. That is consistent with the presence of various progestogens in our cutaneous samples.

The suppression of the weaker androgens, androsterone and 5α-androstane-3,17-dione, in the samples after ADT treatment is interesting in its own regard. These are the intermediate metabolites between the progesterone 5-pregnan-17-ol-3,20-dione and T. The lack of gonadal conversion of progestogens to androgens is consistent with the drop in the concentration of the weaker androgens, androsterone and 5α-androstane-3,17-dione, in the cutaneous axillary secretion of men on ADT. The sebaceous glands of the skin are known to contain the enzyme systems required for local conversion of circulating weaker androgens to potent forms and also for direct synthesis of some androgens from cholesterol. Furthermore, skin is one of the extragonadal tissues that express LH receptors and thus LHRHa treatment may potentially alter the axillary steroid production [36, 37]. However, our results showed no change in the cutaneous secretion of major androgens including T and DHT following ADT. The levels of metabolic intermediates androsterone and 5α-androstane-3,17-dione in the axillary secretions were significantly lowered from the baseline. LHRHa-induced suppression of de novo cutaneous production of T and DHT may have caused shunting of the circulating weaker androgenic metabolites androsterone and 5α-androstane-3,17-dione toward the synthesis of T and DHT, resulting in the decreased level of the former in axillary secretions and maintenance of the levels of the latter. Some androstenes have been associated with chemosignal-
TABLE 1. Estimated marginal mean (± S.E.M) odor ratings for two odor samples (at baseline and three months later) using repeated measures ANOVA.

<table>
<thead>
<tr>
<th>Raters</th>
<th>Rating</th>
<th>Control group (n = 10)</th>
<th>Study group (n = 10)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baseline</td>
<td>3 months</td>
<td>Baseline</td>
<td>3 months</td>
</tr>
<tr>
<td>Male</td>
<td>Attractiveness</td>
<td>2.92 ± 0.18</td>
<td>2.92 ± 0.14</td>
<td>2.72 ± 0.18</td>
</tr>
<tr>
<td></td>
<td>Masculinity</td>
<td>3.13 ± 0.13</td>
<td>2.79 ± 0.14</td>
<td>3.27 ± 0.13</td>
</tr>
<tr>
<td></td>
<td>Intensity</td>
<td>3.27 ± 0.28</td>
<td>2.61 ± 0.18</td>
<td>3.17 ± 0.28</td>
</tr>
<tr>
<td></td>
<td>Attractiveness</td>
<td>2.68 ± 0.18</td>
<td>2.73 ± 0.23</td>
<td>2.55 ± 0.18</td>
</tr>
<tr>
<td>Female</td>
<td>Masculinity</td>
<td>2.94 ± 0.16</td>
<td>2.82 ± 0.21</td>
<td>2.86 ± 0.16</td>
</tr>
<tr>
<td></td>
<td>Intensity</td>
<td>3.03 ± 0.27</td>
<td>2.73 ± 0.19</td>
<td>2.88 ± 0.27</td>
</tr>
<tr>
<td></td>
<td>Attractiveness</td>
<td>2.81 ± 0.15</td>
<td>2.83 ± 0.15</td>
<td>2.65 ± 0.15</td>
</tr>
<tr>
<td>Combined</td>
<td>Masculinity</td>
<td>3.04 ± 0.09</td>
<td>2.80 ± 0.12</td>
<td>3.06 ± 0.09</td>
</tr>
<tr>
<td></td>
<td>Intensity</td>
<td>3.15 ± 0.24</td>
<td>2.68 ± 0.15</td>
<td>3.03 ± 0.24</td>
</tr>
</tbody>
</table>

TABLE 2. Comparison of steroid concentration in odor samples of the study group (at baseline and three months later) using Wilcoxon Signed Rank Test.

<table>
<thead>
<tr>
<th>Steroids</th>
<th>Baseline (ng/mL)</th>
<th>3 months (ng/mL)</th>
<th>median (Q1, Q3)</th>
<th>p</th>
</tr>
</thead>
<tbody>
<tr>
<td>Androsterone</td>
<td>8.97 (4.36, 12.82)</td>
<td>2.24 (1.67, 4.07)</td>
<td>0.02*</td>
<td></td>
</tr>
<tr>
<td>5α-Androstan-3,17-dione</td>
<td>8.44 (5.88, 32.21)</td>
<td>5.75 (2.04, 12.09)</td>
<td>0.02*</td>
<td></td>
</tr>
<tr>
<td>5-Pregnan-17-ol-3,20-dione</td>
<td>0.67 (0.39, 3.81)</td>
<td>1 (0.66, 6.94)</td>
<td>0.11</td>
<td></td>
</tr>
<tr>
<td>Dehydroepiandrosterone</td>
<td>1343.05 (473.09, 2272.63)</td>
<td>736.4 (362.03, 1742.95)</td>
<td>0.16</td>
<td></td>
</tr>
<tr>
<td>Dihydrotestosterone</td>
<td>3.67 (2.64, 6.22)</td>
<td>2.31 (0.93, 4.28)</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>4-Pregnen-17-ol-3,20-dione</td>
<td>1.24 (0.8, 2.13)</td>
<td>1.22 (0.7, 1.47)</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Pregnenolone</td>
<td>798.67 (623.89, 1051.02)</td>
<td>756.97 (565.75, 973.12)</td>
<td>0.30</td>
<td></td>
</tr>
<tr>
<td>Pregnan-3,20-dione</td>
<td>32.38 (23.83, 35.96)</td>
<td>27.41 (22.9, 34.07)</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>17-OH Pregnenolone</td>
<td>21.81 (18.66, 29.64)</td>
<td>19.21 (16.45, 25.89)</td>
<td>0.47</td>
<td></td>
</tr>
<tr>
<td>Cortisol</td>
<td>39.06 (13.93, 96.64)</td>
<td>26.44 (10.25, 46.99)</td>
<td>0.58</td>
<td></td>
</tr>
<tr>
<td>5-Pregnan-3-ol-20-dione</td>
<td>7.36 (6.6, 8.62)</td>
<td>7.42 (6.83, 8.76)</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>Testosterone</td>
<td>10.97 (9.44, 13.22)</td>
<td>9.86 (8.76, 13.86)</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>4-Pregnan-3,17-diol-20-one</td>
<td>7.19 (4.07, 42.71)</td>
<td>12.55 (2.93, 49.65)</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Epi-Testosterone</td>
<td>16.49 (13.76, 18.3)</td>
<td>16.76 (13.27, 19.32)</td>
<td>0.94</td>
<td></td>
</tr>
<tr>
<td>Androstenediolone</td>
<td>12.75 (9.17, 30.53)</td>
<td>10.42 (9.24, 15.74)</td>
<td>1.00</td>
<td></td>
</tr>
<tr>
<td>Progesterone</td>
<td>37.38 (27.95, 46.47)</td>
<td>31.04 (23.83, 40.83)</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

*Difference is considered significant at p < 0.05.
The age difference between the men, who wore the shirts, and the panel, who smelled the shirts, may also have influenced the results. Moreover, there is great diversity in human olfaction, which is known to be mediated mainly by genotypic variations [40]. The reliability of ratings may have been compromised due to such variability in raters’ individual olfactory ability [41], although relatively large numbers of raters were employed to minimize this effect. In addition to this, the sampling technique employed involved participant’s wearing T-shirts in bed for two consecutive nights and following the instructions about dietary restrictions and hygiene. There was no objective way to determine participant’s adherence to the instructions, and this may have affected the outcome.

We recruited and subsequently collected shirt samples across all seasons. Anecdotal observations suggest seasonal variation in axillary sweat production. Personal grooming habits including shaving of axillary hair have also been shown to affect axillary odor [42]. The cutaneous microflora of individuals is unique in terms of its diversity, composition and microbial load and the action of cutaneous microflora on constituents of axillary sweat has been shown to alter odor characteristics [43, 44]. Our sampling method did not control for any of those factors.

Because of potential inadequacies of the sampling methods, plus the subjective assessments of odor in our study, the issue of whether gonadal hormone suppression in men affects their olfactory social signaling remains unresolved. Given our small sample size, our research can best be viewed as a pilot study confirming the feasibility of the methodologies for analyzing the impact of gonadal hormone suppression on steroid cutaneous secretion.

The social implications of body odor for our species are undeniable. As such, the psychological and behavioral implications of endocrine treatments warrant further study not only in PC patients, but in other populations subjected to gonadal hormone manipulations. The literature, for example, exploring the impact of visible changes in body form from breast cancer surgeries on self-esteem and intimate relationship is enormous [45]. In contrast the potential implications of endocrine treatments on body odor for breast cancer patients has received little or no research.

A growing concern relates to the use of puberty blocking agents for pubescent individuals with gender dysphoria [46–48]. There are no data that we know of on the long-term implications on socially significant olfactory signals from individuals exposed to LHRHa at the time that they would normally go through puberty. This concern extends as well to transgenders undergoing GAT [49, 50]. In a recent study by Kranz et al. [51] in transgender individuals, no significant correlation was reported between sex hormones and odor perception after four months of GAT, but the study employed sniffing sticks which did not include body odor. However, the fact that LHRHa drugs change the steroid secretion of PC patients raises a cautionary flag that they may also change in the skin secretions in individuals treated for gender dysphoria. Whether they cause such changes and whether they influence olfactory social signaling remains to be explored. In the interim, hormonal treatments labelled as “gender affirming”, may not provide complete gender affirmation if they do not produce a gender specific olfactory signal.

5. Conclusions

Our study confirms that three months of ADT can significantly alter axillary secretion of some steroids. We found some evidence of a general depression of androgens in the secretions, but this was only statistically significant for the androstanes, androsterone and 5α-androstane-3,17-dione. We anticipated that such changes in secreted hormones would alter the perceived odor of the men’s shirts. This was not found, and various factors may account for this negative result. Future research on chemosignaling from men on LHRHa may need to use a more age matched panel of sniffers and the men may need to be androgen-suppressed for a longer time. It remains an open question as to whether there are olfactory shifts associated with LHRHa drugs that influence the social and sexual relations of men treated with LHRHa for PC and other populations on these same pharmaceutical agents.

Abbreviations

ADT, androgen deprivation therapy; CYP17, cytochrome P450 17α hydroxylase/17,20 lyase (CYP17); d3DHT, dihydrotestosterone; d3T, deuterated testosterone; E2, estradiol; EtOAc, ethyl acetate; GAT, gender-affirming therapy; HA/MeOH, hydroxylamine/methanol; IS, internal standard; LC-MS, liquid chromatography-mass spectrometry; LH, luteinizing hormone; LHRH, luteinizing hormone-releasing hormone; LHRHa, luteinizing hormone-releasing hormone agonists; PC, prostate cancer; T, testosterone.

Author contributions

SIAS, HCPW, PDA, RJW and SCR contributed to the concept, design, definition of intellectual content, manuscript preparation, manuscript editing and manuscript review. SIAS, SCR, VT, JTJ and CA performed the olfactory assessment and analyzed the olfactory data. HHA and ESTG performed the chemical assessment and RHB analyzed the chemical data.

Ethics approval and consent to participate

All samples used in the study were collected after approval as an Imperial College Healthcare Tissue Bank (ICHTB) subcollection (Ref. No. Sur_PA_12_044) and were later issued for analysis following approval (Project No. R14110). ICHT is licensed by Human Tissue Authority (No. 12275) and funded by the tissue banking theme of National Institute of Health Research and Imperial Biomedical Research Centre. ICHT is authorized by the Wales National Research Ethics Service (12/WA/0196) to release human material for
research.

Acknowledgment

We are thankful to Steven Mangar for aiding in recruitment for the study and Richard Harvey for helping with storage of study samples.

Funding

This work was part of the doctoral study of SIAS supported by the Commonwealth Scholarship Commission (PKCA-2011-85). VT and JTF were supported by the Ministry of Education, Youth, and Sports NPU I program (No. LO1611) and by the Czech Science Foundation (Grant No. P407/21-29772S).

Conflict of interest

The authors declare no conflict of interest.

References

[36] Chen W, Thiboutot D, Zouboulis CC. Cutaneous androgen


