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Stability of the CMI-ALS axis in prostate cancer patients:
a new target for prognostic assessment and treatment
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Zhejiang, China score (ALS) quantifies the body’s physiological response to stress. This study aimed to

. investigate the relationship between the CMI and ALS in patients with prostate cancer

lgg;;g; 1nod7§rg1e63com using data from the National Health and Nutrition Examination Survey (NHANES).

(Peng Li) Methods: A total of 139 patients with prostate cancer were included in the analysis.
Receiver operating characteristic (ROC) curve and decision curve analysis (DCA)
were employed to assess the predictive accuracy and clinical net benefit. Multivariate
linear regression was conducted to evaluate the relationship between CMI and ALS.
Additionally, various analytical techniques, including quantile regression and logistic
regression, were utilized to verify the stability and independence of their relationship.
Collinearity, partial correlation, stepwise linear regression, multivariate regression, and
mediation effect analyses were performed to examine whether the shared factor high-
density lipoprotein cholesterol (HDL-C) influenced the CMI-ALS relationship. Results:
The area under the curve (AUC) for CMI in predicting ALS was 0.650, indicating CMI
can distinguish positive and negative samples more accurately than a random guess
(AUC: 0.500), and has predictive ability. DCA indicated a clinical net benefit within
the threshold probability range of 0.25 to 0.61. A positive relationship between CMI
and ALS was observed (8 [95% Confidence interval (CI)]: 0.598 [0.319, 0.877]). The
relationship was found to be both stable and independent (all p < 0.05), unaffected
by confounding factors. Furthermore, this relationship was not attributable to shared
variables, confirming that CMI independently contributed to ALS (all p < 0.05).
Conclusions: The study demonstrated a positive relationship between CMI and ALS
in patients with prostate cancer. The find highlights the importance of monitoring CMI
in those patients for early clinical intervention to mitigate allostatic load.
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1. Introduction Research demonstrates that after 12 months of ADT, patients

exhibit an average 10% increase in visceral fat and a 13%
Prostate cancer is one of the most prevalent malignancies in reduction in insulin sensitivity within just 12 weeks [5]. These
men, ranking second only to lung cancer. In 2022, over metabolic shifts contribute to a markedly higher incidence of
1.46 million cases and 396,000 deaths were reported globally c.ardiovascular dise‘ases (CVDs) compared to non-ADT pa-
[1]. Projections indicate an increase in incidence, with diag- ~ tients [0]. In addition, compared to other tumors, the occur-
noses expected to reach 2.4 million and attributable deaths to ~ ence and development of prostate cancer are more closely
climb to 712,000 by 2040, driven primarily by demographic related to metabolic disorders, mainly because it involves an
changes [2]. Cancer individuals often experience metabolic ab.normal androgen receptor. Abnorma}l androgen receptors
dysregulation [3], and therapies such as chemotherapy, ra- will lead to abnormal androgen levels in the body, which in
diotherapy, and hormone treatment further exacerbate these UM affect normal metabolism [7]. Most studies have shown
disturbances, significantly compromising their quality of life that most metabolic-related diseases are associated with the

[4]. For instance, androgen deprivation therapy (ADT), a  development of prostate cancer, such as metabolic syndrome
and prostate cancer survival [8], diabetes [9], and abnormal

key treatment for advanced prostate cancer, while effective in
lipid metabolism [10].

inhibiting tumor growth, triggers severe metabolic alterations.
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The cardiometabolic index (CMI) is a composite measure
of metabolism derived from blood lipid parameters, specifi-
cally triglycerides (TG) and high-density lipoprotein choles-
terol (HDL-C), as well as the waist-to-height ratio. It is
highly sensitive to visceral fat accumulation and insulin re-
sistance [11]. Initially developed as a predictor for diabetes
risk [12], CMI has gained broader clinical relevance. A grow-
ing body of research has established its positive correlation
with CVD risk and metabolic syndrome [13], making it a
valuable tool for quantifying metabolic disturbances in cancer
individuals. However, current studies predominantly focus
on the cross-sectional relationship between CMI and tradi-
tional cardiovascular events, with limited exploration into the
mechanisms driving systemic physiological disruptions. These
potential mechanisms may include endothelial dysfunction and
blood-brain barrier damage, systemic inflammatory response,
metabolic disorders, insulin resistance, and others.

Chronic metabolic disturbances may contribute to the ac-
cumulation of allostatic load through multiple pathways [13].
The allostatic load score (ALS) serves as a comprehensive in-
dicator of dysregulation across various physiological systems.
It reflects the cumulative strain on the body due to fluctuating
responses from the neuroendocrine, cardiovascular, immune,
and other systems under prolonged stress. ALS is also utilized
to assess chronic stress: the higher the score, the greater the
chronic stress burden. The ALS is calculated by integrating
biomarkers such as cortisol, C-reactive protein (CRP), and
systolic blood pressure (SBP) [14]. Additionally, this index is
linked to cancer development and prognosis, reflecting tumor
progression [15, 16], and can be employed to quantify tumor
severity.

Although the interplay between CMI and advanced ALS has
been implicated in systemic metabolic dysregulation across
various cancers, a crucial knowledge gap remains, particularly
among prostate cancer patients. This is especially impor-
tant given the high prevalence of metabolic comorbidities in
this population and their documented association with cancer
progression [17, 18]. To our knowledge, no previous study
has quantitatively investigated the CMI-ALS relationship in
prostate cancer, despite its potential to clarify mechanistic links
between metabolic disorders and physiological imbalances that
directly affect clinical outcomes. In this study, we address
this unmet need by utilizing the National Health and Nutrition
Examination Survey (NHANES) database to calculate CMI
and ALS indices in prostate cancer patients. Our analysis not
only establishes their association but also provides the first
evidence-based framework for targeting metabolic interven-
tions to enhance the quality of life in this understudied cohort.

2. Materials and methods

2.1 Data accession and study population

This study utilized data from the NHANES 2007-2020 dataset,
managed by the National Center for Health Statistics (NCHS)
at the Centers for Disease Control and Prevention (CDC). The
NHANES survey collects data through interviews and physical
examinations conducted by trained professionals. A complex,
multi-stage, stratified, and clustered probability sampling de-

sign is employed to generate a representative sample of the
U.S. population. The survey has received approval from the
CDC’s ethics board, with all participants providing voluntary
informed consent. This study includes the most recent data
from NHANES; however, due to the small target population,
the scope was expanded to encompass data from 2007 to 2020.
During this period, 3902 patients with tumors were identified,
of which 156 were excluded due to unspecified tumor types.
An additional 3178 patients were excluded for not having a
prostate cancer diagnosis. After screening, 568 patients with
prostate cancer remained. Further exclusions were made for
233 patients without ALS data and 196 without CMI data.
Ultimately, 139 patients with prostate cancer were included
in the analysis. Additionally, to test whether the sample size
is sufficient for analysis, we used G*Power software (version
3.1.9.7, Heinrich Heine University Dusseldorf, Dusseldorf,
NRW, Germany) to estimate the sample size. The results
showed that the minimum required sample size was 114 for an
effect size of d = 0.7, « error probability = 0.05, power (1 — 3
error probability) = 0.95, and an allocation ratio of N2/N1 = 1.
Therefore, 139 samples are sufficient for data analysis. Fig. |
shows the patient selection process. The Strengthening the Re-
porting of Observational Studies in Epidemiology (STROBE)
for this study is included in the Supplementary material.

2.2 CMI and ALS calculation

The calculation formula of CMI includes waist circumference
(WC), triglyceride (TG), height (cm), and high-density
lipoprotein cholesterol (HDL-C, mg/dL). The calculation
formula for CMI is as follows: CMI = (TG/HDL-C) x
(WC/height).

In this study, ALS is defined by the following eight in-
dicators: systolic and diastolic blood pressure, serum total
cholesterol, HDL-C, glycated hemoglobin (HbAlc), albumin
(Alb), body mass index (BMI), and CRP levels. For the
selection of variables used to calculate ALS, each researcher is
required to follow previously published ALS equations. The
number of parameters falling into the highest risk quartile
(with the lower quartile being in HDL-C and albumin, and
the others being in the upper quartile) is summed to calculate
each subject’s allostatic load. The ALS ranges from 0 to
8, with higher scores indicating increased health risks [19—
21]. Notably, due to the absence of CRP data in the 2015-
2016 dataset, the highest quartile of high-sensitivity CRP was
assigned a value of 1 to calculate the score of CRP components
in ALS.

2.3 Covariates

Based on previous studies and hypotheses, this study included
the following covariates: age (years), poverty income ratio
(PIR), cotinine (ng/mL), waist circumference (WC, cm),
albumin (g/dL), total calcium (mmol/L), phosphate (mmol/L),
sodium (mmol/L), potassium (mmol/L), creatinine (mg/dL),
uric acid (mg/dL), white blood cells (WBC, 1000 cells/uL),
lymphocytes (1000 cells/uL), monocytes (1000 cells/uL),
segmented neutrophils (1000 cells/uL), eosinophils (1000
cells/uL), basophils (1000 cells/uL), red blood cells (RBC,
million cells/uL), hemoglobin (g/dL), mean cell hemoglobin
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FIGURE 1. Flow chart of patients with prostate cancer. ALS: allostatic load score; CMI: cardiometabolic index; NHANES:

the National Health and Nutrition Examination Survey.

concentration (MCHC, g/dL), red cell distribution width
(RDW, %), platelets (1000 cells/uL), a body shape index
(ABSI), race (Mexican American vs. other), education level
(below high school vs. high school vs. above high school),
marital status (married vs. other), smoking status (yes vs. no),
alcohol consumption (never vs. former vs. current), obesity
(yes vs. no), hypertension (yes vs. no), diabetes mellitus (DM,
yes vs. no), arthritis (yes vs. no), thyroid disease (yes vs. no),
and hepatic disease (yes vs. no).

A BMI >29.9 kg/m? was considered obese. Thyroid disease
was defined based on the affirmative answer to the question:
“Has a doctor or other health professional ever told you that
you had another thyroid disease?”. Hepatic disease was di-
agnosed based on the “yes” answer to the question: “Has a
doctor or other health professional ever told you that you had
any kind of liver condition?”. DM was defined by the presence
of at least one of the following four criteria: (1) a 2-hour blood
glucose level >11.1 mmol/L during an oral glucose tolerance
test (OGTT); (2) fasting blood glucose >7.0 mmol/L; (3) a
diagnosis of diabetes made by a physician; or (4) current use of

insulin or other antihyperglycemic medications. Hypertension
is diagnosed if any of the following conditions are met: (1)
systolic and diastolic blood pressure readings that meet the
diagnostic criteria for hypertension; (2) a physician’s diagnosis
of hypertension; or (3) current use of antihypertensive medica-
tions. Smoking status was categorized into smokers (cotinine
>15 ng/mL) and non-smokers (cotinine <15 ng/mL) based on
blood cotinine levels [22]. Alcohol consumption was classified
as never, former, or current use, as per previous studies [23].

2.4 Statistical analysis

Data were analyzed by SPSS software (Version 23.0, IBM
Corporation, Armonk, NY, USA). Baseline characteristics of
the study population were described according to ALS sub-
groups. Normality of continuous variables was assessed us-
ing the Shapiro-Wilk test or visual inspection of histogram
distributions. Normally distributed continuous variables are
presented as mean + standard deviation (SD), with between-
group comparisons performed using the independent Student’s
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t-test. Non-normally distributed continuous variables are ex-
pressed as median (25%, 75%) (interquartile range, IQR), with
between-group comparisons analyzed via the Mann-Whitney
U test. Categorical variables are summarized as frequencies
and percentages (n, %), and intergroup differences were eval-
uated using the chi-square test (? test) or Fisher’s exact test (if
any cell in the contingency table had an expected count <5).

Receiver operating characteristic (ROC) curve and decision
curve analysis (DCA) were employed to assess the predic-
tive performance and clinical net benefit of CMI for ALS
>3, respectively. After adjusting for potential confounders
in different models, multiple linear regression was used to
examine the relationship between ALS and CMI (or CMI
quartiles), calculating the beta values and 95% confidence
intervals. Additionally, trend regression analysis explored the
trend in the relationship between these variables. Logistic
regression, using the same adjusted models, analyzed the as-
sociation between CMI and ALS median groups, calculating
the odds ratio (OR) and 95% confidence intervals (CI). To
analyze the influence of CMI on the values of ALS at different
positions, quantile regression was used to examine the impact
of CMI on the 9th (3rd) quantile of ALS, evaluating the details
and stability of CMI’s effect on ALS.

Given that HDL-C is a shared factor between CMI and
ALS, multiple methods were employed to assess whether the
relationship between CMI and ALS is influenced by HDL-C.
These methods included: (1) collinearity analysis to explore
the relationship between CMI and ALS, with a variance infla-
tion factor (VIF) >5 indicating collinearity; (2) partial corre-
lation analysis to determine if HDL-C affects the relationship
between CMI and ALS; (3) stepwise linear regression analysis
to explore the independence and robustness of the relationship
between CMI and ALS; (4) multivariate regression analysis
to evaluate the stability of the relationship between CMI and
ALS; (5) mediation analysis to explore the mediating role of
HDL-C between CMI and ALS. A p-value of less than 0.05
was considered statistically significant.

3. Results

3.1 Baseline characteristics of the study
population

Table | shows that the median age of patients with prostate can-
cer we included was 71 years, and their median CMI was 0.618.
Table | also demonstrates significant differences in PIR, WBC,
segmented neutrophils, hemoglobin, RDW, platelets, and CMI
between the ALS <3 group and the ALS >3 group. The ALS
>3 group exhibited significantly lower PIR (2.470 (1.090,
3.710) vs. 3.140 (1.690, 5.000)), hemoglobin (14.000 (13.300,
15.100) vs. 14.800 (13.800, 15.400)), and hematocrit (42.100
(38.300, 44.600) vs. 43.800 (40.600, 45.700)) compared to the
ALS <3 group (all p < 0.05). Conversely, WBC (6.700 (5.700,
8.400) vs. 6.100 (5.000, 7.500)), segmented neutrophils (4.200
(3.400, 5.400) vs. 3.800 (2.900, 4.400)), platelets (229.000
(193.000, 268.000) vs. 205.000 (181.000, 251.000)), RDW
(13.600 (13.200, 14.500) vs. 13.300 (12.800, 13.900)), and
CMI (0.866 (0.474, 1.287) vs. 0.497 (0.307, 0.905)) were
significantly higher in the ALS >3 group (all p < 0.05).

Table 2 highlights significant differences between the two
groups regarding smoking status.

3.2 Association between CMI and ALS and
their stability assessment

ROC and DCA were initially employed to evaluate the clinical
value of CMI in predicting ALS in patients with prostate
cancer. The ROC analysis revealed an AUC of 0.650, with
sensitivity, specificity, and accuracy values of 0.681, 0.587,
and 0.612, respectively. Although AUC 0.650 shows that
the predictive ability of CMI for ALS is at a lower-middle
level (generally considered 0.7-0.8 as a medium predictive
value), its sensitivity is better than its specificity, indicating
that this indicator is more suitable for “exclusion” rather than
“diagnosis” scenarios. In clinical practice, this feature may
help reduce the risk of missed diagnosis (Fig. 2A). DCA
demonstrated that within the threshold probability range of
0.25 to 0.61, CMI provided a substantial clinical net benefit
in predicting ALS (Net benefit up to 0.14) (Fig. 2B).

Then, a significant independent linear relationship between
CMI and ALS was revealed via linear regression analysis
(Crude model: 3 [95% CIJ: 0.598 [0.319, 0.877]; model 1:
B [95% CI]: 0.574 [0.293, 0.855]; model 2: 5[95% CI]: 0.561
[0.278, 0.845]; model 3: 3 [95% CI]: 0.537 [0.258, 0.816]; all
p <0.05, Table 3). Trend regression analysis further confirmed
a positive trend, with ALS increasing as CMI elevated (p for
trend < 0.05, Table 3).

To validate the stability of this association, ALS was treated
as a categorical variable based on its median, and logistic
regression was applied. The analysis confirmed a significant
relationship between CMI and ALS in the crude model (OR
[95% CI]: 2.298 [1.235, 4.279], p = 0.009, Table 4), indicating
for every l-unit increase in CMI, the chance of having an
ALS greater than 3 increases by 2.298 times. Moreover, this
significant relationship remained robust even after adjusting
for confounding factors (model 1: OR [95% CI]: 1.992 [1.073,
3.698]; model 2: OR [95% CI]: 2.731 [1.286, 5.800]; model
3: OR [95% CI]: 2.184 [1.077, 4.429]; all p < 0.05, Table 4).
Quantile regression analysis was then employed to investigate
local heterogeneity in the relationship between ALS and CMI.
Results revealed that the correlation coefficients remained sta-
ble within the range of 0.5-0.6, regardless of whether ALS
was divided by the 9th or 3rd quantile (Fig. 3A,B), indicating
consistent sensitivity of ALS to CMI across different quantiles.
The linear regression coefficient was approximately 0.55, and
these findings collectively suggest that the overall effect ob-
served in linear regression is stable, with quantile regression
further supporting the robustness of the results.

To test the robustness of the relationship between CMI and
ALS, we performed a statistical subgroup analysis using linear
regression analysis. The results demonstrated a statistically
significant linear association in most subgroups, including age
>71(B[95% CI]: 0.568 [0.257, 0.879]), age <71 (5 [95% CI]:
0.698 [0.141, 1.256]), PIR >2.66 (5 [95% CI]: 0.614 [0.268,
0.960]), PIR <2.66 (5 [95% CI]: 0.512 [0.030, 0.993]), above
high school (8 [95% CI]: 0.550 [0.215, 0.884]), and married
(B [95% CI]: 0.616 [0.296, 0.937]) groups (Table 5).
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TABLE 1. Continuous characteristics of patients with prostate cancer according to the two groups of the baseline ALS.

Variables Total ALS <3 ALS >3 y
(n=139) (n=92) (n =47) ‘ p
Age, yr 71.000 (3.000, 71.000 (65.000, 71.000 (62.000, 0.672  0.500
78.000) 79.000) 77.000)
PIR 2.660 (1.580, 5.000)  3.140 (1.690, 5.000)  2.470(1.090,3.710)  2.029  0.040
Total calcium, mmol/L 2350 (2.300,2.400)  2.350(2.300,2.400)  2.350 (2.300,2.400)  0.401  0.689
Phosphate, mmol/L 1.130 (1.030, 1.230)  1.130(1.033,1.227)  1.130(1.030,1.290) —0.370  0.713
Sodium, mmol/L 140.000 (138.000, 141.000 (138.000, 140.000 (138.000,  1.086  0.275
142.000) 142.000) 141.000)
Potassium, mmol/L 4200 (4.000,4.400)  4.100 (3.980,4.400)  4.200 (4.000, 4.400) —0.367  0.714
Creatinine, mg/dL 1.030 (0.920, 1.220)  1.020(0.920, 1.210)  1.080 (0.970, 1.220)  —0.750  0.454
Uric acid, mg/dL 6.227 + 1.468 6.146 + 1.452 6.385 + 1.486 ~0.906  0.366
WBC, 1000 cells/uL 6.400 (5.200, 8.000)  6.100 (5.000,7.500)  6.700 (5.700, 8.400)  —2.262  0.024
Lymphocyte, 1000 cells/uL 1.600 (1.300,2.100)  1.600 (1.300,2.000)  1.700 (1.300,2.200)  —0.545  0.586
Monocyte, 1000 cells/uL 0.600 (0.500, 0.700)  0.500 (0.400, 0.700)  0.700 (0.500, 0.700)  —1.770  0.073
Segmented neutrophils, 1000 3.900 (3.000, 4.700)  3.800 (2.900, 4.400)  4.200 (3.400, 5.400)  —2.186  0.029
cell/uL.
Eosinophils, 1000 cells/uL 0.200 (0.100,0.300)  0.200 (0.100, 0.300)  0.200 (0.100,0.300)  —0.588  0.546
Basophils, 1000 cells/uL 0.000 (0.000, 0.100)  0.000 (0.000, 0.100)  0.000 (0.000, 0.100)  —0.639  0.454
RBC, million cells/uL 4750 (4.520,5.060)  4.760 (4.530,5.000)  4.670 (4.220,5.060)  0.928  0.354
Hemoglobin, g/dL 14.500 (13.500, 14.800 (13.800, 14.000 (13.300, 2.186  0.029
15.400) 15.400) 15.100)
Hematocrit, % 42.900 (40.200, 43.800 (40.600, 42.100 (38.300, 2329 0.020
45.600) 45.700) 44.600)
MCHC, g/dL 33.714 + 1.037 33.684 + 0.947 33.772 £ 1.192 0474 0.637
RDW, % 13.400 (12.900, 13.300 (12.800, 13.600 (13.200, 2524 0.012
14.300) 13.900) 14.500)
Platelets, 1000 cells/uL 216.000 (185.000, 205.000 (181.000, 229.000 (193.000,  —2.433  0.015
262.000) 251.000) 268.000)
ABSI 86.029 = 3.360 85.775 + 3.466 86.525 + 3.084 ~1242 0216
CMI 0.618 (0.359,1.006)  0.497 (0.307, 0.905)  0.866 (0.474, 1.287)  —2.894  0.004

Note: Normally distributed continuous variables are presented as mean + standard deviation (SD), and abnormally distributed
continuous variables are presented as median (25%, 75%). ALS: allostatic load score; CMI: cardiometabolic index; PIR: poverty
income ratio; WBC': white blood cell; RBC: red blood cell; RDW: red cell distribution width; MCHC: mean cell hemoglobin
concentration, ABSI: a body shape index.

TABLE 2. Categorical characteristics of patients with prostate cancer according to the two groups of the baseline ALS.

Variables Total ALS <3 ALS >3 2 »
(n=139) n=92) (n=47)

Race, n (%)
Mexican America 15 (10.791) 10 (10.870) 5(10.638) 0.002 0.967
Other 124 (89.209) 82 (89.130) 42 (89.362)

Education level, n (%)
Below high school 29 (20.863) 16 (17.391) 13 (27.660)
High school 36 (25.899) 25(27.174) 11 (23.404) 1.990 0.370
Above high school 74 (53.237) 51 (55.435) 23 (48.936)

Marital status, n (%)
Married 94 (67.626) 66 (71.739) 28 (59.574) 2103 0.147
Other 45 (32.374) 26 (28.261) 19 (40.426)



84

TABLE 2. Continued.

Variables Total ALS <3 ALS >3 2 »
(n=139) (n=92) (n=47)

Smoking, n (%)
No 98 (86.726) 68 (94.444) 30 (73.171) 10.270 0.001
Yes 15 (13.274) 4 (5.556) 11 (26.829)

Drinking, n (%)
Never 12 (8.759) 9 (9.890) 3(6.522)
Former 42 (30.657) 26 (28.571) 16 (34.783) 0.821 0.663
Current 83 (60.584) 56 (61.538) 27 (58.696)

Hypertension, n (%)
No 38 (27.338) 27 (29.348) 11 (23.404) 0.553 0.457
Yes 101 (72.662) 65 (70.652) 36 (76.596)

DM, n (%)
No 72 (51.799) 52 (56.522) 20 (42.553) 5 431 0.119
Yes 67 (48.201) 40 (43.478) 27 (57.447)

Arthritis, n (%)
Yes 75 (54.348) 48 (52.747) 27 (57.447) 0976 0.599
No 63 (45.652) 43 (47.253) 20 (42.553)

Thyroid disease, n (%)
Yes 11 (7.971) 8 (8.6906) 3(6.522) 0.198 0.657
No 127 (92.029) 84 (91.304) 43 (93.478)

Hepatic disease, n (%)
Yes 8 (5.755) 5(5.435) 3 (6.383) 0.052 0.820
No 131 (94.245) 87 (94.565) 44 (93.617)

Note: The missing values for smoking and drinking were 26 and 2, respectively. ALS: allostatic load score; DM: diabetes mellitus.
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FIGURE 2. The clinical value analysis of CMI in predicting ALS (allostatic load score). (A) ROC: receiver operating
characteristic; (B) DCA: decision curve analysis. CMI: cardiometabolic index; AUC: area under the curve.
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TABLE 3. Linear regression analysis between CMI /quartiles of CMI and ALS.

Variable Crude model Model 1 Model 2 Model 3
B [95% CI] p 5 [95% CI] p 5 [95% CI] p B [95% CI] p

CMI 0.598[0.319, <0.001 0.574[0.293, <0.001 0.561[0.278, <0.001  0.537[0.258, <0.001
0.877] 0.855] 0.845] 0.816]

Ql Ref Ref Ref Ref Ref Ref Ref Ref

Q2 0.308 [-0.350, 0360  0.326[—0.344, 0.341 0.169 [-0.533,  0.638  0.090 [—0.557, 0.784
0.966] 0.996] 0.871] 0.738]

Q3 0.936 [0.278, 0.005 0.900 [0.244, 0.007 1.155[0.421, 0.002 0.917 [0.270, 0.005
1.594] 1.555] 1.888] 1.564]

Q4 1.222 [0.564, <0.001 1.234 [0.546, <0.001 1.212 [0.504, 0.001 1.004 [0.343, 0.003
1.880] 1.922] 1.920] 1.666]

pfortrend 0.430[0.223, <0.001 0.429[0.214, <0.001 0.463[0.240, <0.001 0.388[0.180, 0.001
0.636] 0.644] 0.686] 0.596]

Crude model: without adjustment.

Model 1: adjusting for PIR.

Model 2: adjusting for smoking.

Model 3: adjusting for hemoglobin, RDW, platelets, WBC, and segmented neutrophils.

CMI: cardiometabolic index; ALS: allostatic load score; CI: confidence interval; Ref: reference; PIR: poverty income ratio;
RDW: red cell distribution width; WBC: white blood cell.

TABLE 4. Logistic regression analysis between CMI and ALS.

Variable Crude model Model 1 Model 2 Model 3
OR [95% CI] p OR [95% CI] p OR [95% CI] p OR [95% CI] p
CMI 2.298 [1.235, 0.009 1.992 [1.073, 0.029 2.731[1.286, 0.009 2.184[1.077, 0.030
4.279] 3.698] 5.800] 4.429]

Note: ALS was divided into two groups according to the median.

Crude model: without adjustment.

Model 1: adjusting for PIR.

Model 2: adjusting for smoking.

Model 3: adjusting for hemoglobin, RDW, platelets, WBC, and segmented neutrophils.

CMI: cardiometabolic index; ALS: allostatic load score; OR: odds ratio; CI: confidence interval;, PIR: poverty income ratio;
RDW: red cell distribution width; WBC: white blood cell.
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FIGURE 3. Quantile regression analysis of the association between the ALS and CMI. (A) Analysis employing continuous
CMI demonstrates the changing relationship across its distribution (10th, 20th, 30th, 40th, 50th, 60th, 70th, 80th, 90th percentiles)
with ALS. The slope illustrates how the predicted ALS value alters for a one-unit increase in CMI at different quantiles. (B)
Analysis comparing ALS levels across population subgroups defined by CMI tertiles reveals disparities in predicted ALS values
between the groups at specified quantiles. Abbreviations: CMI: cardiometabolic index; CI: confidence interval; ALS: allostatic
load score.
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TABLE S. The linear regression analysis between ALS

and CMI in subgroups.

Variables B [95% CI] P
Age (yr)

>71 0.568 [0.257, 0.879] 0.001

<71 0.698 [0.141, 1.256] 0.017
PIR

>2.66 0.614 [0.268, 0.960] 0.001

<2.66 0.512 [0.030, 0.993] 0.041
Education level

Below high school  0.619 [-0.062, 1.301] 0.086

High school 0.723 [-0.139, 1.585] 0.109

Above high school  0.550[0.215, 0.884] 0.002
Marital status

Married 0.616 [0.296, 0.937] <0.001

Other 0.544 [-0.001, 1.089] 0.057
Note: Age and PIR were divided into two groups ac-

cording to the median. ALS: allostatic load score; CMI:
cardiometabolic index; PIR: poverty income ratio; CI:
confidence interval.

3.3 The effect of shared variable on the
relationship between CMI and ALS

Given that HDL-C is a shared variable in the computation of
both CMI and ALS, the real association between CMI and ALS
may be covered due to the existence of the shared variable
HDL-C. Therefore, several methods were employed to reveal
the role of shared variables in their association, including
collinearity analysis, partial correlation analysis, stepwise re-
gression, and multiple regression analysis. Finally, mediation
analysis was also conducted to investigate whether HDL-C
mediates the relationship between CMI and ALS.

Collinearity analysis revealed that the VIFs for CMI
and ALS were 1.129 and 1.128, respectively, indicating no
collinearity caused by HDL-C between the two variables.
Partial correlation analysis demonstrated that the correlation
between CMI and ALS remained significant both before and
after controlling for HDL-C (before: Partial Coefficient of
Correlation (pcor) = 0.338, p < 0.001; after: pcor = 0.286, p
= 0.001). In the stepwise regression, HDL-C was included
first, resulting in an R? of 0.035. Upon adding CMI, the R?
increased to 0.114, with an increment of 0.079. This change
in R? was statistically significant (p = 0.001). This finding
indicates that CMI independently contributes significantly to
ALS. Further multivariate regression analysis, incorporating
both HDL-C and CMI, confirmed that after adjusting for the
shared variable, the correlation coefficient between CMI and
ALS remained at 0.594 (p < 0.001), signifying the stability
of their relationship. The result of mediation analysis showed
no mediating effect of HDL-C (p = 0.928, Table 6). These
findings collectively suggest that CMI has a statistically
significant independent contribution to ALS, maintains a
stable association with ALS, and that this relationship is not a
spurious correlation arising from shared variables.

4. Discussion

This study presents the first analysis evaluating the relationship
between CMI and ALS using NHANES data in patients with
prostate cancer. Our findings established a positive corre-
lation between ALS and CMI after adjusting for potential
confounders. Various analytical approaches confirmed the
robustness of this relationship, and different methodologies
were employed to ensure that shared factors between the two
variables did not affect the association, thereby strengthening
the reliability of our conclusions.

The analysis revealed that higher CMI values in patients
with prostate cancer were associated with elevated ALS levels.
These findings may be linked to the pathogenesis of prostate
cancer itself.

In prostate cancer, androgen receptor (AR) pathway ac-
tivation drives tumor progression by promoting cancer cell
survival and proliferation [24]. Standard therapy includes AR
antagonists, which competitively block the AR, preventing
endogenous androgen binding and halting androgen-dependent
signaling and tumor growth [25]. However, this treatment
induces adverse metabolic effects: altered body composition
(increased fat mass, decreased lean mass), dyslipidemia, and
reduced insulin sensitivity [26], along with elevated fasting in-
sulin levels. These pathological alterations, evident through an
increased waist-to-height ratio, directly correlate with higher
CMI values.

In patients with prostate cancer, the increase in CMI
indicated fat accumulation.  Adipose tissue secret pro-
inflammatory cytokines and trigger systemic low-grade
inflammation [5]. These inflammatory signals cross the
blood-brain barrier and impact the hypothalamus, leading to
persistent activation of the hypothalamic-pituitary-adrenal
(HPA) axis and an increase in glucocorticoid secretion.
Meanwhile, it induces the activation of pro-inflammatory
microglia in the hypothalamic arcuate nucleus, further
amplifies the central inflammatory signal, and inhibits the
negative feedback sensitivity of the glucocorticoid receptor.
Chronic elevation of cortisol levels results in glucocorticoid
receptor desensitization, disrupting negative feedback
regulation and creating a vicious cycle of inflammation-HPA
axis dysregulation [27]. This process is shown in ALS
by an increase in inflammatory markers such as CRP and
cortisol circadian rhythm disorders [28]. Fat accumulation
also promotes heightened leptin secretion, which removes
inhibitory regulation of the brainstem solitary nucleus
and enhances sympathetic nervous system output. This
overactivation of the sympathetic nervous system results
in elevated blood pressure [24]. Moreover, leptin also
releases a large amount of free fatty acids through A3-
adrenergic receptor-mediated lipolysis, thereby activating
the Toll-like receptor 4/Nuclear Factor kappa-light-chain-
enhancer of activated B cells (NF-xB) pathway and forming a
“sympathetic-fat inflammation” positive feedback loop. These
changes are manifested in ALS through abnormal dynamic
blood pressure monitoring. Furthermore, insulin resistance, as
indicated by an increase in CMI, can impair skeletal muscle
glucose uptake via the Phosphoinositide 3-kinase/Protein
kinase B (PI3K/Akt) signaling pathway, continuously activate
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TABLE 6. The mediation analysis of HDL-C in the relationship between CMI and ALS.

Path Coefficient [95% CI]
HDL-C~CMI —0.254 [-0.323, —0.185]
ALS~HDLC —0.693 [-1.305, —0.081]
Total 0.598 [0.317, 0.879]
Direct 0.587[0.254,0.919]
Indirect 0.012 [-0.247, 0.231]

SE D Significance
0.035 <0.001 Yes
0.309 0.027 Yes
0.142 <0.001 Yes
0.168 0.001 Yes
0.116 0.928 No

CMI: cardiometabolic index; ALS: allostatic load score; HDL-C: high-density lipoprotein cholesterol; CI: confidence

interval; SE: standard error.

the liver Forkhead Box O1 signaling pathway, and promote
the expression of key enzymes in gluconeogenesis, while
enhancing the expression of gluconeogenesis enzymes,
resulting in chronic hyperglycemia [25]. Hyperglycemia
activates the receptor for advanced glycation endproducts
(RAGE) receptor via advanced glycation end products
(AGESs), inducing endothelial inflammation and fibrosis [26].
Increases in fasting blood glucose and HbAlc in ALS reflect
this process.

Although this study found that the predictive efficacy of
CMI for ALS was at a moderate level (AUC = 0.65), this indi-
cator has unique application value in clinical practice: First,
CMI, as a composite parameter derived from conventional
blood lipid detection and body measurement indicators, can
be obtained immediately without additional detection costs,
and a comprehensive assessment of allostatic load requires the
detection of 8 biomarkers. If CMI is used to screen prostate
cancer patients with higher ALS, it can avoid over-detection
of low-risk patients and significantly optimize the allocation
of medical resources. Secondly, CMI is more sensitive than
traditional obesity indicators to reflect the dynamic changes
of visceral fat. In this study, the risk of ALS progression
in patients with an annual increase of one score in CMI was
increased by about 2.298 times (p = 0.009), suggesting that it
can be used as a real-time monitoring indicator of intervention
efficacy.

5. Strength and limitations

This study robustly validates its findings through various ana-
lytical methods, demonstrating a positive correlation between
CMI and ALS in patients with prostate cancer. The results
provide a comprehensive research framework for similar stud-
ies. Moreover, this study identifies CMI as a reliable predictive
factor for clinical interventions aimed at managing chronic
stress in patients with prostate cancer. Focusing on CMI
facilitates early intervention for patients with elevated CMI,
potentially reducing their ALS, improving survival rates, and
extending lifespan. However, this study has several limita-
tions. (1) The study population is drawn from the NHANES
database, which may introduce racial and geographical biases.
(2) As this study is cross-sectional, causal relationships cannot
be established. (3) The incomplete availability of some data
(such as other ALS components, thyroid hormone test data,
or liver pathological data) could result in both measurement

bias and disease misclassification. (4) The sample data was
not collected in the last five years. Due to the COVID-19
pandemic starting in 2019, the data were only updated until
2020. Although we examined newer datasets, critical metrics
were largely unrecorded, making recent data too fragmentary
for reliable use. In addition, the outbreak may increase the
chronic pressure of patients, thereby increasing ALS, which
make the results biased. Therefore, future studies should verify
CMTI’s predictive ability for ALS in a prospective multi-center
large sample and simultaneously conduct an interventional
randomized trial for CMI (such as the Mediterranean diet com-
bined with sodium-glucose transporter 2 (SGLT2) inhibitors)
to assess its effect on allostatic load biomarkers (such as cor-
tisol and Interleukin-6 (IL-6)) and progression-free survival.
Additionally, the molecular mechanism of CMI driving should
be analyzed through animal models and organoid experiments
to provide a theoretical basis for early intervention of CMI,
thus reducing the allostatic load of patients and improving
survival for patients with prostate cancer.

6. Conclusions

In this study, we found that CMI was positively correlated with
ALS in prostate cancer patients. Our findings demonstrate that
elevated CMI levels may increase allostatic load, consequently
heightening the risk of poor clinical outcomes. Furthermore,
they suggest that clinical monitoring of CMI could enable
early interventions to reduce allostatic load levels, thereby
potentially improving the prognosis for patients with prostate
cancer.

ABBREVIATIONS

CMI, cardiometabolic index; ROC, Receiver operating charac-
teristic; DCA, decision curve analysis; HDL-C, high-density
lipoprotein cholesterol, ADT, androgen deprivation therapys;
TG, Triglycerides; ALS, allostatic load score; CRP, C-reactive
protein; SBP, systolic blood pressure; NHANES, National
Health and Nutrition Examination Survey; NCHS, National
Center for Health Statistics; CDC, Centers for Disease Control
and Prevention; WC, waist circumference; HbAlc, glycated
hemoglobin; Alb, Albumin, BMI, body mass index; PIR,
poverty income ratio; WBC, white blood cell; RBC, red blood
cell; MCHC, mean cell hemoglobin concentration; RDW,
red cell distribution width; ABSI, a body shape index; DM,
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diabetes mellitus; OGTT, oral glucose tolerance test; SD,
standard deviation; OR, odds ratio; CI, confidence intervals;
AR, androgen receptor; AGEs, advanced glycation end prod-
ucts; AUC, area under the curve; CVDs, cardiovascular dis-
eases; IQR, interquartile range; VIF, variance inflation factor;
HPA, hypothalamic-pituitary-adrenal; NF-xB, Nuclear Factor
kappa-light-chain-enhancer of activated B cells; PI3K, Phos-
phoinositide 3-kinase; Akt, Protein kinase B; RAGE, receptor
for advanced glycation endproducts; SGLT2, sodium-glucose
transporter 2; IL-6, Interleukin-6.
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