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Abstract
Background: We developed a machine learning-based predictive model for diagnosing
prostate cancer within the gray zone of prostate-specific antigen (PSA) levels, leveraging
transrectal prostate ultrasound video clips. Methods: Data were collected for patients
with suspected prostate cancer, characterized by intermediate PSA levels between 4
and 10 ng/mL, who visited the Department of Urology, Dongyang People’s Hospital,
which is affiliated with Wenzhou Medical University, from 20 August 2021 to 30
September 2023. Among the final selection of 508 patients, a total of 851 features
were extracted from the ultrasound video clips, reduced the dimensionality using least
absolute shrinkage and selection operator regression, and finally selected 25 features.
The selected features were employed to construct radiomics models based on four
machine learning algorithms support vector machine (SVM), random forest (RF),
adaptive boosting (ADB) and gradient boosting machine (GBM). The performance of
the model was comprehensively assessed using receiver operating characteristic (ROC)
curve analysis, with diagnostic effectiveness measured through metrics such as the area
under the curve (AUC), sensitivity, specificity and overall accuracy. Results: The RF
model demonstrated an AUC of 0.89, accuracy of 0.81, sensitivity of 0.81, specificity
of 0.79, positive predictive value of 0.91 and F1 score of 0.77. As compared to the
RF model, the SVM, ADB and GBM models showed similar values for AUC (range
0.80–0.86), accuracy (range 0.75–0.79), sensitivity (range 0.80–0.81), specificity (range
0.65–0.75), positive predictive value (range 0.83–0.89) and F1 score (range 0.72–0.76).
In the validation set, following comprehensive evaluation, the RF model exhibited the
best performance among the four models. Conclusions: The four machine learning
models each had diagnostic value for detecting prostate cancer in patients within the
PSA “gray zone”, with the RF model demonstrating the highest predictive performance.
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1. Introduction

Prostate cancer (PCa) remains one of the most common ma-
lignancies affecting men worldwide, characterized by a high
incidence rate and varying degrees of aggressiveness [1]. Clin-
ically significant prostate tumors pose a significant health risk
due to their potential for progression and metastasis [2]. The
diagnostic approaches for PCa have traditionally relied on a
combination of digital rectal examinations (DRE), prostate-
specific antigen (PSA) testing [3], and advanced imaging tech-
niques such as transrectal ultrasound (TRUS) and magnetic
resonance imaging (MRI) [4].

PSA testing, in particular, is a cornerstone in the early
detection of PCa. PSA is a protein produced by both normal

and malignant prostate cells, with elevated levels of PSA often
serving as a marker for potential malignancy [3, 5]. However,
there is a so-called “PSA gray zone”, typically defined as a
PSA range between 4 and 10 ng/mL, presents a diagnostic
challenge [6]. This range is particularly problematic due to
an increased risk of false-positive results, as PSA levels within
this gray zone are neither clearly indicative of benign condi-
tions nor definitively diagnostic for PCa. As a result, additional
evaluation is required to improve diagnostic accuracy.

To address the diagnostic challenges associated with the
PSA gray zone, additional biomarkers and advanced imaging
techniques have been explored. For instance, recent research
has investigated the potential of prostate health index scores
[7], 4Kscore tests, and multiparametric MRI to enhance di-
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agnostic accuracy within this uncertain range [8, 9]. Despite
these diagnostic advances, many studies are significantly con-
strained by small sample sizes, limiting their generalizability.
Other studies have relied on static imaging [10], whichmay not
capture the dynamic behavior of tumor. Moreover, some new
modalities are cost-prohibitive and not universally available,
further restricting their practical application in routine clinical
practice [11]. These shortcomings underscore the need for in-
novative and accessible methods to improve the specificity and
sensitivity of PCa detection in the PSA gray zone, providing
an impetus for the development of novel, dynamic and cost-
effective solutions.
The recent surge inmachine learning (ML) techniques offers

a promising avenue for addressing the challenges and com-
plexities associated with the PSA gray zone. With the capacity
to analyze vast datasets and identify subtle patterns, machine
learning can potentially unveil novel imaging biomarkers and
improve decision-making processes [12]. The integration of
ML with dynamic imaging modalities, such as TRUS videos,
could provide a more detailed and nuanced understanding of
tumor characteristics, facilitating improved risk stratification
for patients with PSA levels in the gray zone.
Our study harnessed the power of machine learning in con-

junction with TRUS video data to extract pertinent radiomic
features. Through this approach, we developed a model ca-
pable of accurately distinguishing between benign conditions
and malignancies within the PSA gray zone. The rationale
for combining ML with TRUS video data lies in the ability
of dynamic imaging to provide a temporal dimension to tissue
characterization, which static images cannot capture. By train-
ing a model with this enriched data, we can effectively capture
the heterogeneity of prostate tissue and identify malignancies
with greater precision.
As far as we are aware, this study represents the first at-

tempt to combine machine learning with TRUS video data
for risk assessment in the PSA gray zone of prostate tumors,
and the largest-scale investigation to date. Our research not
only advances the diagnostic capabilities for PCa but also
introduces a scalable and cost-effective tool that can be readily
implemented in diverse clinical settings. By bridging the
gap between advanced ML techniques and practical clinical
applications, we believe our model is a significant milestone
in the management of PCa, particularly for patients navigating
the diagnostic uncertainty of the PSA gray zone.

2. Methods and materials

2.1 General information
A retrospective study was performed on clinical data collected
from patients presenting with suspected prostate cancer at
the Department of Urology, Dongyang Hospital, affiliated
with Wenzhou Medical University, between August 2021 and
September 2023. Initially, 1189 cases were reviewed, of which
508 cases were eventually included, comprising 187 cases of
PCa and 321 cases of benign prostatic lesions. Participant
selection criteria were rigorously operationalized as follow:
(1) The preoperative assessment encompassed serum biomark-
ers associated with prostate-specific antigen (PSA), including

total PSA (tPSA), free PSA (fPSA) and the fPSA/tPSA ratio,
all measured within the range of 4 to 10 ng/mL; (2) com-
pletion of TRUS examination; and (3) patients who under-
went transperineal prostate biopsy and received pathological
diagnostic results. The exclusion criteria were: (1) previous
prostate treatment such as hormonal or radiation therapy, and
(2) incomplete clinical data or imaging examinations.
Among the 508 patients, 436 cases were randomly selected

for training and validating the models, whereas the remaining
72 were used for assessing the derived models. The study
protocol was evaluated and approved by the ethics committee
of the hospital and subsequently registered. Fig. 1 illustrates
the process of participant inclusion and exclusion.

2.2 Ultrasound video clip acquisition
Ultrasound video clips were obtained using the Esaote My-
Lab™ Class C color Doppler ultrasound diagnostic system
(TRT33 transrectal dual-plane ultrasound probe, frequency
range 3–13 MHz). The procedure was performed by three
highly experienced ultrasound specialists, each boasting over
a decade of expertise in transrectal ultrasound diagnostics.
Transrectal prostate ultrasound imaging was performed, and
10-second transverse section video clips of the prostate were
recorded and preserved for subsequent data analysis.

2.3 Manual segmentation
Three physicians, each with more than five years’ clinical
experience in transrectal ultrasound (TRUS) diagnostics, man-
ually annotated the images using 3D Slicer software (v.5.03).
The entire prostate was outlined as the region of interest using
three image sets. To ensure privacy, all identifying informa-
tion, including patient names, was removed. Cases were as-
signed numerical identifiers and randomized to prevent sono-
graphers from accessing any potentially relevant information
prior to outlining the regions of interest.
Intraclass correlation coefficients (ICCs) were utilized to

evaluate the consistency of the extracted imaging histology
features, considering both within-subject and between-subject
variability. Features with ICCs ≥0.8, indicating acceptable
reproducibility, were retained for the subsequent feature selec-
tion process.

2.4 Extraction and selection of features
Imaging histology features were extracted using the Slicer
Radiomics extension package (v.aa418a5) within the 3D Slicer
software [13]. From each case, we extracted 851 imaging
histology features, including 14 shape features, 18 first-order
features, 24 gray-level co-occurrencematrix (GLCM) features,
14 gray-level dependency matrix (GLDM) features, 16 gray-
level run length matrix (GLRLM) features, 16 gray-level size
zone matrix (GLSZM) features, 5 neighborhood gray-tone
difference matrix (NGDM) features and 744 wavelet features.
Features were selected using Python (v.3.8.8). Initially,

all features underwent Levene’s χ2 test, followed by two
independent sample t-tests (for features passing the χ2 test)
or Mann-Whitney U tests (for features failing the χ2 test) to
assess discrepancies between benign and malignant lesions,
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FIGURE 1. Flowchart of the study inclusion and exclusion criteria. PSA: prostate-specific antigen.

maintaining features with noteworthy differences (p < 0.05).
Labels were assigned to each case’s data based on pathological
findings, where 1 labeled “malignant” and 0 labeled “benign”.
The residual features were then processed using least absolute
shrinkage and selection operator (LASSO) regression for fur-
ther screening. Within the training dataset, a rigorous tenfold
cross-validation protocol was iterated 1000 cycles to calibrate
the regularization parameters (λ) and isolate most informative
features. Ultimately, features with non-zero coefficients were
selected.

2.5 Machine Learning

Machine learning models were developed using the scikit-
learn 0.24.2 library in Python [14]. The training cohort was
randomly split into an 80% training subset and a 20% internal
validation subset. Feature classification within the training
set was conducted using four machine learning algorithms:
Support Vector Machine (SVM), Random Forest (RF), Adap-
tive Boosting (ADB), and Gradient BoostingMachine (GBM),
each applied independently. Model optimization was con-
ducted using grid search and cross-validation (GridSearchCV)
to determine the parameter configurations that achieved the
highest accuracy in the validation set for each model.

2.6 Statistical analysis

Statistical computations were performed utilizing Statistical
Package of Social Sciences (SPSS) version 25.0 (IBM Corp.,

Armonk, NY, USA). Levene’s test was used to assess normal-
ity. For normally distributed continuous variables, descriptive
analysis is presented as mean ± standard deviation, and inter-
group differences were analyzed using independent sample t-
tests. Non-normal distributions are described by median and
interquartile range (IQR), with statistical contrasts performed
through Mann-Whitney U test. Categorical variables were
quantified as frequency distributions (expressed in percent-
ages) and subjected to statistical analysis using the χ2 test or
continuity correction test. Receiver operating characteristic
(ROC) curves were utilized to assess the diagnostic perfor-
mance of the models for prostate cancer (PCa), including met-
rics such as area under the curve (AUC), sensitivity, specificity
and diagnostic accuracy. A statistical significance threshold of
p < 0.05 was applied. The overall flowchart for the study is
presented in Fig. 2.

3. Results

3.1 Baseline characteristics
Following screening, a total of 508 cases were collected, com-
prising 321 benign prostatic lesions and 187 PCa instances.
These patients were divided into a training group (436 cases)
and a validation group (72 cases), with comparable baseline
characteristics including age (71 years, IQR: 66–76 years vs.
70 years, IQR: 65–73 years), total prostate specific antigen
(tPSA) concentrations (6.47 ng/mL, IQR: 5.23–7.82 ng/mL
vs. 6.25 ng/mL, IQR: 5.06–7.85 ng/mL) and prostate volume
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FIGURE 2. Overall study flowchart, including feature extraction, feature selection, machine learning and model
validation. ADB: adaptive boosting; RF: random forest; GBM: gradient boosting machine; ROC: receiver operating
characteristic; AUC: area under the curve; SVM: support vector machine; TPR: true positive rate; MSE: mean square error.

(39.2 cm3, IQR: 31.82–50.42 cm3 vs. 38.28 cm3, IQR: 29.59–
47.33 cm3), with no significant differences observed between
the training and validation groups, respectively.
Post-biopsy pathological results revealed that in the training

group, 275 cases (63.1%) were diagnosed with benign prostate
lesions, including benign prostatic hyperplasia (BPH) in 227
cases (52.1%), BPH with prostatitis in 45 cases (10.3%), and
high-grade prostatic intraepithelial neoplasia (HGPIN) in 3
cases (0.7%). Additionally, there were 161 cases (36.9%) of
PCa, with Gleason scores (GS) distributed as follows: GS
6, 96 cases (22.0%); GS 7, 54 cases (12.4%); and GS ≥8,
11 cases (2.5%). In the validation group, 47 cases (65.3%)
were diagnosed with benign prostate lesions, including BPH
in 38 cases (52.8%), BPH with prostatitis in 7 cases (2.6%)
and HGPIN in 2 cases (2.8%). Furthermore, there were 25
cases (34.7%) of PCa, with GS disseminated as follows: GS
6, 11 cases (15.3%); GS 7, 11 cases (15.3%) and GS ≥8, 3
cases (4.1%). Clinical and pathological characteristics of the
training and validation groups are comprehensively outlined in
Table 1.

3.2 Feature selection

A total of 851 distinct features were derived from the ultra-
sound video clip datasets for each individual case, which were
then subjected to feature selection using either t-tests or Mann-
Whitney U tests based on the normality evaluation performed
with Levene’s test (p > 0.05). In LASSO regression, 10-
fold cross-validation was employed to determine the optimal
λ coefficient. After LASSO dimensionality reduction, 25 fea-
tures were retained: 7 original features and 18 wavelet features
(Table 2). Additionally, Fig. 3 demonstrates the process of
identifying key parameters from the featureswithin the training
set and the subsequent development of the linear predictor.
Meanwhile, Fig. 4 displays the optimal penalty coefficient (λ)

determined during the model optimization process.
Among the salient features delineated in Table 2, the origi-

nal shape-related features are particularly noteworthy, as they
provide critical insights into the morphology and margins of
tumors within the US images. These features are instrumental
in facilitating accurate diagnostic assessments. Additionally,
several wavelet features capture intricate internal variations of
the tumors, potentially reflecting subtle pathological changes
that may signify malignancy or distinct tissue characteristics,
thereby enhancing the interpretative depth of the model.

3.3 Model effectiveness
The RF model exhibited an AUC of 0.89, accuracy of 0.81,
sensitivity of 0.81, specificity of 0.79, positive predictive value
of 0.91, and F1 score of 0.77. The SVM model demonstrated
an AUC of 0.80, accuracy of 0.79, sensitivity of 0.81, speci-
ficity of 0.75, positive predictive value of 0.89, and F1 score of
0.76. The ADB model achieved an AUC of 0.85, accuracy of
0.75, sensitivity of 0.80, specificity of 0.65, positive predictive
value of 0.83, and F1 score of 0.72. Lastly, the GBM model
obtained an AUC of 0.86, accuracy of 0.75, sensitivity of
0.80, specificity of 0.65, positive predictive value of 0.83,
and F1 score of 0.72. Upon comprehensive analysis of the
evaluation metrics across the four models in the validation set,
the performance of the RFmodel surpassed that of GBM, ADB
and SVM, exhibiting superior predictive performance and the
best predictive efficacy for PSA gray zone PCawhen compared
to the other three models. The diagnostic performances of the
RF, SVM, ADB and GBM models are summarized in Table 3,
whereas the ROC curves are depicted in Fig. 5.

4. Discussion

Prostate biopsy is commonly considered the definitive method
for diagnosing prostate cancer (PCa). Nevertheless, this inva-
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TABLE 1. Clinicopathological characteristics of the training and test cohort.

Parameters (projects) Training cohort
(n = 436)

Test cohort
(n = 72)

Age (yrs, median, IQR) 71 (66, 76) 70 (65, 73)
tPSA (ng/mL, median, IQR) 6.47 (5.23, 7.82) 6.20 (5.06, 7.85)
fPSA (ng/mL, median, IQR) 0.98 (0.69, 1.30) 0.84 (0.64, 1.05)
fPSA/tPSA (median, IQR) 0.15 (0.12, 0.19) 0.14 (0.11, 0.16)
PV (cm3, median, IQR) 39.2 (31.82, 50.45) 38.28 (29.59, 47.33)
PSAD (ng/mL, cm3, median, IQR) 0.09 (0.07, 0.11) 0.17 (0.13, 0.21)

Pathology
Number of Benign cases (n, %) 275 (63.1) 47 (65.3)

BPH 227 (52.1) 38 (52.8)
BPH & prostatitis 45 (10.3) 7 (9.7)
HGPIN 3 (0.7) 2 (2.8)

Number of PCa cases (n, %) 161 (36.9) 25 (34.7)
GS: 6 96 (22.0) 11 (15.3)
GS: 7 54 (12.4) 11 (15.3)
GS: 8 9 (2.1) 3 (4.1)
GS: 9 1 (0.2) 0
GS: 10 1 (0.2) 0

Abbreviations: IQR: interquartile range; tPSA: total prostate specific antigen; fPSA: free prostate specific antigen; f/tPSA:
free/total prostate specific antigen ratio; PV: prostate volume; PSAD: prostate specific antigen density; BPH: benign prostatic
hyperplasia; HGPIN: high-grade prostatic intraepithelial neoplasia; PCa: prostate cancer; GS: Gleason score.

TABLE 2. The subset of radiomics features ultimately selected by the LASSO algorithm.
Feature(s) Image type Feature class Feature name LASSO coefficients
1 original shape Least Axis Length 0.033571
2 original shape Maximum 2D Diameter Column −0.093023
3 original shape Maximum 2D Diameter Row 0.005961
4 original shape Mesh Volume 0.087038
5 original shape Sphericity −0.060414
6 original shape Surface Volume Ratio 0.024544
7 original GLCM Difference Average −0.014693
8 Wavelet-LHL First-order Kurtosis −0.030508
9 Wavelet-LHL First-order Median 0.034010
10 Wavelet-LHL GLCM ClusterShade −0.021096
11 Wavelet-LHL GLCM Inverse Variance 0.001262
12 Wavelet-LHL GLCM Joint Average 0.008146
13 Wavelet-LHL First-order Median −0.026531
14 Wavelet-LHL First-order Median 0.053700
15 Wavelet-LHL First-order Minimum −0.046910
16 Wavelet-LHL GLSZM Gray Level Variance 0.100897
17 Wavelet-LHL GLSZM Small Area High Gray Level Emphasis 0.094075
18 Wavelet-LHL First-order Minimum −0.059024
19 Wavelet-LHL First-order Minimum 0.016990
20 Wavelet-LHL First-order Total Energy 0.037929
21 wavelet-HHH GLCM Imc2 −0.061461
22 Wavelet-HHH GLSZM High Gray Level Zone Emphasis −0.068249
23 Wavelet-HHH GLSZM Small Area Low Gray Level Emphasis −0.039780
24 wavelet-LLL GLSZM Id 0.158603
25 Wavelet-LLL GLSZM Idn −0.045269
GLCM: gray-level co-occurrence matrix; GLSZM: gray-level size zone matrix; LASSO: least absolute shrinkage and selection
operator. Imc2: incremental matrix completion2; Idn: identifier numeric; Id: identifier.
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FIGURE 3. Identification of key feature parameters within the training set and development of the linear predictor.
(A) Spearman’s correlation coefficients were estimated for the twenty-five selected features. (B) Feature classification weights.
GLCM: gray-level co-occurrence matrix; GLSZM: gray-level size zone matrix; Imc2: incremental matrix completion2; Idn:
identifier numeric; Id: identifier.

FIGURE 4. Determination of the optimal penalty coefficient, λ. (A) Ten-fold cross-validation was employed to select the
tuning parameters for the LASSO model. (B) Solution path of LASSO coefficients for the 25 features. MSE: mean square error;
coef: coefficients.

sive procedure may lead to considerable psychological burden
in patients with PSA levels in the gray zone. Therefore, it is
necessary to combine multiple techniques for diagnosing PCa
in patients within the PSA gray zone. PSA has revolutionized
the diagnosis of PCa, especially in the detection of early
asymptomatic cases. It is noteworthy that when PSA levels
are between 4–10 ng/mL, there is a significant overlap in the
number of patients with BPH and PCa [15]. In recent years,
the application of multiparametric MRI (mpMRI) has further
improved the sensitivity and specificity of PCa diagnosis. The
Prostate Imaging Reporting and Data System version 2 (PI-
RADS v2) is in clinical use, but its predictive value for prostate
biopsy results in patients in the PSA gray zone remains limited
[16].

TRUS and mpMRI are two widely utilized imaging tech-
niques for the evaluation of prostate diseases. TRUS is ex-
tensively used in clinical practice due to its safety, lack of
radiation, low cost and simplicity [17, 18]. TRUS can usually

clearly visualize the contours of the prostate, as well as indicate
the transition zone with isoechoic and hypoechoic areas, with
around 70% of prostate cancers are located in the periph-
eral zone (which generally appear as hypoechoic lesions).
However, PCa situated within the transition zone can present
detection challenges, as the neoplasm might be concealed by
the hypoechoic background tissue. Although grayscale TRUS
is helpful in diagnosing BPH, it is unreliable for detecting PCa
[19, 20]. The accuracy of TRUS in detecting PCa in the general
population is only moderate [21]. In studies concerning the
PSA gray zone, the detection rate for PCa is 25% [22]. In this
study, out of 508 patients with suspected PCa in the PSA gray
zone, 187 (36%) were diagnosed with PCa by biopsy, a slightly
higher fraction than in previous research results. This variation
could potentially stem from a multitude of factors, including
but not limited to ethnic diversity, geographical distinctions
and dietary practices.

Conversely, liquid biopsies have gained significant promi-
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TABLE 3. Performance outcomes for each machine learning models.
Data set AUC Accuracy Sensitivity Specificity Positive

predictive value
Negative

predictive value
F1-score

SVM
Validation set 0.85 0.85 0.91 0.74 0.87 0.81 0.83
Test set 0.80 0.79 0.81 0.75 0.89 0.60 0.76

RF
Validation set 0.90 0.85 0.89 0.76 0.89 0.76 0.83
Test set 0.89 0.81 0.81 0.79 0.91 0.60 0.77

ADB
Validation set 0.86 0.76 0.81 0.63 0.84 0.57 0.71
Test set 0.85 0.75 0.80 0.65 0.83 0.60 0.72

GBM
Validation set 0.85 0.80 0.86 0.68 0.84 0.71 0.78
Test set 0.86 0.75 0.80 0.65 0.83 0.60 0.72

AUC: area under the curve; SVM: support vector machine; RF: random forest; ADB: adaptive boosting; GBM: gradient boosting
machine.

FIGURE 5. ROC curves of categorical multivariate models in the validation set (A) and test set (B). ROC: receiver
operating characteristic; SVM: support vector machine; AUC: area under the curve; RF: random forest; ADB: adaptive boosting;
GBM: gradient boosting machine.

nence as a valuable tool in cancer research, serving as a
complement to conventional tissue biopsies [23]. This non-
invasive technique enables real-time assessment of genomic,
transcriptomic, and epigenomic alterations in both primary
and metastatic tumors. By integrating data from multiple
liquid biopsies, it becomes possible to thoroughly evaluate
tumor heterogeneity and subclonal evolution, which aids in
the development of personalized therapeutic strategies [24].
Various clinical studies to date have demonstrated the utility
of liquid biopsy using cell-free DNA and extracellular vesicles
(EVs) as tools in distinct clinical stages of PCa management.
Specifically, circulating tumor DNA is increasingly used in
advanced cases of metastatic castration-resistant PCa, as it
targets genetic mutations within the tumor, enabling treatment
choices based on these mutations. When a tumor grows, the

expression of certain molecules within EVsmay increase. This
approach is key because, if these specific molecules can be
pinpointed early on, even at the early stages of PCa, it could
greatly aid in early detection [25]. Although liquid biopsy
has demonstrated enormous potential to improve the current
practice, additional assays for risk stratification are required
to supplement the current model [26]. To accompany the
PSA test for PCa screening, high-specificity tests are needed.
After PSA screening, a key challenge is determining how to
further select the best candidates for needle biopsy to avoid
such invasiveness in a non-cancer population. Even though
the future of PCa treatment using liquid biopsy holds great
promise, addressing the existing challenges is imperative for
its successful integration into routine clinical practice, mak-
ing personalized and precise PCa management a reality for
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patients.
Prostate enlargement with increasing age leads to a con-

comitant increase in prostate volume and cell count, which,
in turn, results in elevated PSA secretion by epithelial cells.
The diagnostic efficacy of total PSA (tPSA) values for PCa
is notably lower within the PSA gray zone compared to cases
with PSA levels >10 ng/mL [27]. Notably, Liu constructed
a PCa prediction model for 197 patients in the PSA gray
zone using PSA and its derivatives, with sensitivity and speci-
ficity for predicting PCa of 75.4% and 75.8%, respectively
[28]. However, the aforementioned study failed to account for
imaging-based assessments.
Radiomics in prostate cancer (PCa) represents a rapidly

advancing field of study, holding great promise for providing
non-invasive and longitudinal biomarkers to support personal-
ized medicine [29]. This innovative approach utilizes machine
learning techniques to convert visual image data into detailed
quantitative metrics, extracting extensive feature information
from medical images, which are then used to build predic-
tive models [30]. Radiomics facilitates robust quantitative
analysis of imaging data, enabling non-invasive evaluation
of tumor biology, and has been extensively applied in the
diagnosis of PCa, assessment of tumor aggressiveness, and
support of clinical decision making [31]. Notably, radiomics-
based methods for diagnosing PCa malignancy and GS scoring
have demonstrated good predictive performance [32].
By high-throughput data extraction and building efficient

and stable predictive models (such as our extraction of features
from video clips), radiomics can offer auxiliary diagnostic ca-
pabilities for clinical applications. Feature selection is crucial
in ML research, as the absence of high-throughput feature ex-
traction can result in data redundancy and overfitting [33–35].
Jin predicted early cervical cancer lymph nodemetastasis using
ML methods, extracting 106 radiomic features from lymph
node ultrasound images. By integrating LASSO and ridge
regression, key features were selected from high-dimensional
data to mitigate the risk of overfitting. Subsequently, six
features were identified for classification analysis, demon-
strating a strong correlation with tumor texture complexity
and heterogeneity [36]. In addition, Wang conducted ML
prediction research on PCa in TRUS video clips, achieving
SVM model AUCs of 0.78 and 0.75 in the validation and
test sets, respectively. The diagnostic performance of the
SVM model was higher than diagnostics based on MRI (AUC
values of 0.78 vs. 0.65/0.75 and 0.75 vs. 0.65/0.72, respec-
tively), indicating that it achieves greater diagnostic efficacy
and consistency [37]. Furthermore, Li determined that an SVM
model based on MRI achieved good diagnostic performance
for the malignancy of PI-RADS category 3 prostate lesions
(training set AUC = 0.93 and validation set AUC = 0.89) and
invasion prediction (training set AUC = 0.92 and validation
set AUC = 0.85) [38]. Qi established SVM, RF, ABD and
GBMmachine learningmodels for PCa prediction using TRUS
video clips combined withMRI, with AUCs of 0.87, 0.85, 0.84
and 0.81, respectively, indicating high predictive performance
[39]. Additionally, Nketiah et al. [40] combined texture
features extracted from T2 weighted image with quantitative
apparent diffusion coefficient values and dynamic contrast-
enhanced pharmacokinetic parameters for predicting PCa GS

grading. Their approach achieved a higher predictive perfor-
mance (AUC = 0.91) compared to the RF model within the
study (AUC = 0.88). This discrepancy could be explained
by the limited sample size and the absence of an independent
validation cohort in their analysis [40]. While these studies
differ in focus, they collectively underscore the significant
diagnostic and predictive value of ML models for PCa. They
also highlight the versatility of ML applications across various
imaging modalities and datasets.
Chen conducted a regression analysis on age, PSA-related

indicators, TRUS and mpMRI to construct a binary logistic
regression model to predict and evaluate the diagnostic value
of PCa in patients in the PSA gray zone. Their results indicated
that when selecting a critical value above 0.36, the AUC, sen-
sitivity, and specificity of the PCa prediction model were 0.79,
73.64% and 64.23%, respectively [41]. Our predictive model
demonstrated superior diagnostic performance compared to
theirs, likely due to the ability of machine learning (ML) mod-
els to extract a greater amount of image feature information. As
part of this work, a total of 851 feature types were extracted and
subsequently filtered using the LASSO algorithm, resulting
in the retention of 25 non-zero feature types that showed
reliable correlations with PCa. Predictive models were then
constructed using SVM, RF, ADB and GBM algorithms. In
the validation set, the AUC values achieved were 0.85, 0.90,
0.86 and 0.85, respectively. Corresponding accuracy rates
were 0.79, 0.81, 0.75 and 0.75; positive predictive values were
0.89, 0.91, 0.83 and 0.83; and F1 scores were 0.76, 0.77,
0.72 and 0.72, respectively. In contrast, Liu achieved AUC
values of the validation set using logistic regression, Gaussian
Naive Bayes, light gradient-boostingmachine (LGBM)Classi-
fier, and extreme gradient boosting (XGBoost) ML models of
0.918, 0.893, 0.906 and 0.893, respectively, with accuracies
of 0.811, 0.792, 0.794 and 0.800, and F1 values of 0.758,
0.765, 0.749 and 0.771 [42]. This outcome indicates that the
diagnostic performance of the four machine learning models
selected in their study is higher than that of our study, which
may be due to differences in samples or ML model selection.
Despite the inclusion of 508 cases in this study, the test set

comprised a relatively limited sample size of 72 cases, which
may introduce potential bias. Furthermore, while the ratio of
sample sizes between the BPH group and the PCa group was
maintained at approximately 2:1 to achieve balance, the overall
sample size remained moderate. This constraint increases the
risk of classifier models encountering issues such as overfitting
and reduced generalizability. As a result, expanding the test set
sample size is crucial to enhance the reliability and robustness
of the findings.
Although the RF model demonstrated good predictive

results within this unit, it has not been applied and validated
in other clinical settings. Therefore, multicenter studies
are needed for further testing and validation. Additionally,
prospective studies are required to verify the reliability and
accuracy of this model, to improve the predictive efficacy and
detection rate of PCa in patients with PSA “gray zone” levels.
Such efforts could potentially lower the rate of unwarranted
prostate biopsies in this patient population.
This study used prostate biopsy pathology as a reference

rather than prostatectomy pathology, which may have intro-
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duced bias [43]. For patients diagnosed with PCa through
biopsy, some patients may have missed the opportunity for
surgical intervention, potentially affecting the outcomes.

5. Conclusions

Machine learning models for PCa diagnosis, utilizing algo-
rithms such as SVM, RF, ADB and GBM, have shown sig-
nificant diagnostic potential for patients with PSA “gray zone”
level. Among these models, the RF algorithm demonstrated
the highest predictive performance. These ML models offer
promising tools to aid clinical decision-making, supporting
physicians in achieving accurate diagnoses and tailoring per-
sonalized treatment plans. Additionally, they provide valuable
guidance for prostate biopsy decisions and optimizing follow-
up strategies for patients within the PSA “gray zone”.

ABBREVIATIONS

PCa, Prostate cancer; PSA, prostate specific antigen;
AUC, area under the curve; ROC, Receiver operating
characteristic; SVM, support vector machine; RF, random
forest; ADB, adaptive boosting; GBM, gradient boosting
machine; TRUS, Transrectal ultrasound; MRI, Magnetic
resonance imaging; ML, Machine learning; ICCs, Intraclass
correlation coefficients; LASSO, Least absolute shrinkage and
selection operator; SPSS, Statistical Package for the Social
Sciences; IQR, Interquartile range; tPSA, Total prostate-
specific antigen; BPH, Benign prostatic hyperplasia; HGPIN,
High-grade prostatic intraepithelial neoplasia; GS, Gleason
score; US, Ultrasound; mpMRI, Multiparametric magnetic
resonance imaging; DRE, digital rectal examinations; fPSA,
free prostate-specific antigen; GLRLM, gray-level run length
matrix; GLSZM, gray-level size zone matrix; NGDM,
neighborhood gray-tone difference matrix; SVM, support
vector machine; ADB, adaptive boosting; EVs, extracellular
vesicles; PI-RADS, Prostate Imaging Reporting and Data
System; LGBM, light gradient-boosting machine; XGBoost,
extreme gradient boosting; CLCM, collaborative latent class
model; IPR, individual prediction reliability.
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