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Abstract
Background: Prostate cancer is the second most common malignant tumor among
men worldwide. This study explores potential metabolic biomarkers and pathways
through metabolomics and evaluates the diagnostic performance of a metabolic panel
in distinguishing prostate cancer, benign prostatic hyperplasia (BPH) and prostatitis.
Methods: Liquid chromatography-mass spectrometry (LC-MS) was used to perform
untargeted metabolomic analysis on serum samples from 30 prostate cancer patients,
30 BPH patients, and 30 prostatitis patients. Based on the identified metabolites,
LASSO regression was applied for variable selection, and logistic regression and
support vector machine models were developed. Results: The LASSO algorithm’s
ability to select variables effectively reduced redundant features and minimized model
overfitting. Receiver Operating Characteristic (ROC) analysis demonstrated strong
diagnostic performance, with an area under the curve of 0.852 for prostate cancer versus
BPH and 0.891 for prostate cancer versus prostatitis. Enrichment analysis revealed
that fatty acid metabolism, particularly the biosynthesis of unsaturated fatty acids, is
a key metabolic feature of prostate cancer. Conclusions: This study demonstrates
that metabolites selected through the LASSO algorithm, combined with machine
learning models, enhance the early diagnosis of prostate cancer and exhibit excellent
performance in distinguishing it from BPH and prostatitis. These findings lay a
foundation for precision medicine and disease screening, with potential applications in
early intervention and personalized treatment in clinical practice.
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1. Introduction

Prostate cancer (PCa) is the second leading cause of cancer-
related deaths among men, and its incidence has been steadily
increasing worldwide, posing a significant public health chal-
lenge [1, 2]. Currently, prostate-specific antigen (PSA) is the
most widely used biomarker for PCa screening and diagnosis
[3]. However, while PSA is organ-specific, it is not cancer-
specific, as elevated PSA levels can also occur in patients with
benign prostatic hyperplasia (BPH) or prostatitis, reducing
its diagnostic precision. Even with the use of complemen-
tary clinical parameters—such as PSA density, free-to-total
PSA ratio, or multiparametric magnetic resonance imaging
(mpMRI)—distinguishing PCa from other benign conditions
remains challenging. This difficulty is particularly evident
when PSA levels fall within the 4–10 ng/mL “gray zone”,
where the positive biopsy rate is only 25–40%, resulting in
unnecessary biopsies and increased healthcare burdens [4, 5].

Thus, novel biomarkers are urgently needed to improve the
accuracy of early PCa detection and reduce the frequency of
unnecessary invasive procedures.

In recent years, metabolomics has gained attention as a
powerful, high-throughput approach for identifying metabolic
alterations associated with diseases [6]. By analyzing small-
molecule metabolites in biofluids such as blood and urine,
metabolomics offers insights into the metabolic disruptions
involved in disease onset and progression, providing potential
biomarkers for clinical diagnosis [7, 8]. Compared to uri-
nary metabolomics, serum metabolomics has several advan-
tages: it eliminates the need for prostate massage, reducing
patient discomfort and operational complexity [9]. Addition-
ally, as a noninvasive and convenient screening tool, serum
metabolomics is well-suited for large-scale population studies
[8].

While previous studies have employed nuclear magnetic
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resonance (NMR) or gas chromatography-mass spectrome-
try (GC-MS) to investigate metabolic changes in PCa, these
methods have limitations. NMR lacks sensitivity, and GC-
MS can only detect small volatile compounds [10]. In con-
trast, liquid chromatography-mass spectrometry (LC-MS) of-
fers higher sensitivity and can identify larger, thermally un-
stable metabolites, providing a more comprehensive metabolic
profile [11, 12].
For example, Bondar et al. [13] (2007) used LC-MS/MS to

measure serum levels of Zn-α2-glycoprotein (ZAG), finding
that ZAG levels were significantly higher in PCa patients
(7.59 mg/L) than in BPH patients (6.21 mg/L) and healthy
individuals (3.65 mg/L, p = 0.0007). These results suggest that
ZAG can help differentiate malignant from benign conditions.
However, the study was limited by a small sample size and
reliance on a single biomarker, and ZAG levels were found
to be influenced by other metabolic disorders [13]. Therefore,
multi-biomarker approaches are necessary to improve diagnos-
tic accuracy and ensure reliable predictions.
This study aims to systematically analyze the serum

metabolic profiles of patients with PCa, BPH and prostatitis
using LC-MS [13] to identify biomarkers that can accurately
distinguish PCa from other benign prostate diseases. We
hypothesize that the metabolic profiles of PCa patients differ
significantly from those of BPH and prostatitis patients and
that LC-MS analysis can effectively distinguish between these
three conditions. Furthermore, we will apply machine learning
algorithms to the selected metabolites to enhance diagnostic
performance, especially when PSA levels fall within the 4–10
ng/mL gray zone. By integrating metabolomics with machine
learning, we aim to develop a novel noninvasive diagnostic
tool for early PCa detection, reducing unnecessary biopsies,
improving diagnostic efficiency, and supporting precision
medicine. Ultimately, this approach seeks to enhance patient
outcomes, survival rates, and quality of life.

2. Materials and methods

2.1 Study participants
In this retrospective cross-sectional study, we analyzed the
data of 90 participants—30 patients with PCa, 30 with BPH,
and 30 with prostatitis—who were admitted to Lishui Central
Hospital (the Fifth Affiliated Hospital of Wenzhou Medical
College) between August 2021 and December 2023. All par-
ticipants underwent PSA screening, biopsy, transrectal ultra-
sound (TRUS), and digital rectal examination (DRE) following
the National Comprehensive Cancer Network guidelines for
PCa [14]. Written informed consent was obtained from all
participants prior to their inclusion in the study. All partic-
ipants were enrolled by a urologist based on clinical criteria
for diagnosing BPH, prostatitis and PCa. PSA levels for all
participants ranged 4–10 ng/mL. Prostate cancer was defined
as follows: (i) nodules detected through DRE; (ii) hyper- or
hypoechoic lesions seen in TRUS; and (iii) biopsy-confirmed
PCa with a Gleason score of 6 or above. BPH was diagnosed
after a negative DRE, TRUS and biopsy result. The diagnosis
of prostatitis had to meet one of the following criteria: (1)
infiltration of inflammatory cells within the prostate stroma or

(2) infiltration of inflammatory cells in the area surrounding
the prostate [15], with the infiltrate primarily comprising lym-
phocytes, along with plasma cells.
Participants were eligible for inclusion if they were above

50 years of age, had PSA levels between 4 and 10 ng/mL,
and had not used 5α-reductase inhibitors or other medications
affecting PSA levels in the past year. Additional criteria
included no prior prostate biopsy, no previous diagnosis of
PCa, no acute urinary tract infection or indwelling catheter
within the past 2 weeks, and completion of mpMRI within 2
weeks of the prostate biopsy. Moreover, participants had to
be willing to provide blood samples and sign written informed
consent. Exclusion criteria included a history of other cancers,
severe cardiovascular, hepatic, or renal diseases, psychiatric
disorders, use of 5α-reductase inhibitors (e.g., finasteride) for
more than three months, incomplete clinical records, or refusal
to sign the informed consent.

2.2 Materials and reagents
Fisher Scientific (Fair Lawn, NJ, USA) supplied acetonitrile,
methanol, and formic acid (LC-MS grade). Sigma-Aldrich (St.
Louis, MO, USA) provided ammonium bicarbonate (LC-MS
grade). Internal standards were furnished by Cambridge Iso-
tope Laboratories, Inc. (Tewksbury, MA, USA), Toronto Re-
search Chemicals (Toronto, Canada), and Avanti Polar Lipid,
Inc. (Birmingham, AL, USA). The ultrapure water was gener-
ated using theMilli-Qwater system (Merck KGaA, Darmstadt,
Germany).

2.3 Sample collection and preparation
Following the standard operating procedure, blood samples
and clinical characteristics were collected from participants.
All participants fasted overnight, and their blood was drawn
the nextmorning. To ensure complete coagulation, the samples
were transferred into serum gel tubes, gently inverted five
times, and left at room temperature for 60 minutes. The
samples were then centrifuged at 4 ◦C for 10 minutes at 1500g
to separate serum, which was aliquoted into cryovials and
stored at −80 ◦C.
Polar metabolites from each serum sample were extracted

and analyzed using two detection methods, both employing
reverse-phase chromatography: technique 1 used positive
ionization mode, while technique 2 used negative ionization
mode. After thawing the samples at 4 ◦C, 100 µL of each
sample was mixed with 400 µL of a methanol-acetonitrile
solution containing isotope-labeled internal standards (ISs).
The internal standards included: chenodeoxycholic acid-d4
(1.0 µg/mL), AcCa(12:0)-d9 (0.2 µg/mL), AcCa(18:0)-d3
(0.2 µg/mL), palmitic acid-13C16 (0.2 µg/mL), hippuric
acid-d5 (1.0 µg/mL), stearic acid-d35 (1.0 µg/mL),
Chlorophenylalanine (1.0 µg/mL), and taurine-d4 (1.0
µg/mL). The mixture was vortexed for 5 minutes and
centrifuged at 13,000g for 15 minutes at 4 ℃. Two 200 µL
aliquots of the supernatant were transferred to a CentriVap
concentrator (centrifugal vacuum concentrator, Labconco
Corporation, Kansas, MO, USA) and freeze-dried. The quality
of sample preparation was assessed by calculating the relative
standard deviation (RSD%) of the raw mass spectrometry



99

response values of the internal standards across all samples,
with results ranging from 1.07% to 16.37%, meeting the
technical requirements for biological sample analysis. Equal
portions of each sample extract were pooled to serve as
analytical quality control (QC) samples, and all samples were
prepared in parallel for testing.
To ensure analytical integrity, four QC samples were evenly

distributed at the beginning, middle, and end of each data
collection sequence. Quality control results were assessed
using principal component analysis (PCA), time-series plotting
of the first principal component, and Spearman correlation
analysis between the initial and final QC samples. To rehydrate
the freeze-dried samples, 120 µL of a 1:1 methanol/water
solution was added to each sample.

2.4 Ultra-high-performance liquid
chromatography high-resolution mass
spectrometry (UHPLC-HRMS) analytical
methods
An Ultimate™ 3000 UPLC system coupled with a Q Exac-
tive™ Quadrupole-Orbitrap mass spectrometer (Thermo Sci-
entific, San Jose, CA, USA) was used in the measurements
of the metabolites. In method 1, metabolites were separated
by an ACE C18-PFP column and then detected using positive
electrospray. As mobile phases, water (A) and acetonitrile
(B) with 0.1% formic acid were used. Over a period of 10
minutes, the linear gradient increased from 2% to 98% organic
mobile phase. For method 2, the metabolome was analyzed
in negative ion mode using an Acquity™ HSS C18 column
provided by Waters Corporation (Milford, USA). A mixture
of water and acetonitrile/methanol with 5 mM ammonium
bicarbonate (NH4HCO3) was utilized as the mobile phase. A
gradient was established to start at 2% organic phase, ramping
up to 100% over 10 minutes, followed by an additional 5
minutes for column washing and equilibration. Both methods
used the same flow rate (0.4 mL/min), injection volume (5µL),
and column temperature (50 ◦C).
Quadrupole-Orbitrap mass spectrometers functioned with

identical ionization parameters except for the ionization volt-
age, using heated electrospray ionization (ESI) sources. The
parameters included sheath gas at 45 arbitrary units (arb),
auxiliary gas at 10 arb, heater temperature at 355 ◦C, capillary
temperature at 320 ◦C, and S-Lens RF level at 55%. Using
Automatic Gain Control (AGC) set to 1E6 and a max injection
time of 200 ms, 70,000 full widths at half maximum resolution
were applied to metabolome extracts in full scan mode. The
scan range was 70–1000 m/z. QC samples were repeatedly
injected to obtain the top 10 data-dependent MS2 spectra (full
scan-ddMS2) for detailed metabolite structural annotation. A
resolution setting of 17,500 Full Width at Half Maximum
(FWHM) was used for the acquisition of full MS/MS data.
Stepped normalized collision energywas used for the collision-
induced dissociation of metabolites, with ultrapure nitrogen
serving as the fragmentation gas.

2.5 Metabolomic data processing
Metabolic peaks were processed for component extraction
using Compound Discoverer 2.1 software (Thermo Scientific,

San Jose, CA, USA). Structural annotation was further
achieved by comparing the acquired MS2 data with the
proprietary iPhenome™ SMOL high-resolution MS/MS
spectrum local library, generated with the mzCloud library,
as well as authentic standards. Additionally, exact m/z
values (±5 ppm) from MS1 spectra were matched against
the Chemical metabolite database based on the Human
Metabolome Database (HMDB) [16]. Separate manual
inspections of the proposed identification results were
required to eliminate false positives. The metabolomic data
were normalized, trimmed, and log-transformed for further
processing [17]. SIMCA-P software (version 14.1, Sartorius
AG Umetrics, Goettingen, NI, Germany), which comprises
orthogonal partial least squares discriminant analysis
(OPLS-DA) and PCA, was used for multivariate analyses.
Additionally, univariate analyses, such as independent
sample t-tests and false discovery rate adjustments using the
Benjamini-Hochberg method, as well as data visualization
and Chemical Similarity Enrichment Analysis (ChemRICH)
chemical enrichment analysis, were conducted on a proprietary
R-based cloud computing platform, Integrated Pathway-
Oriented Scoring (IPOS) [18]. Metabolic pathway analysis of
differential metabolites was executed by the MetaboAnalyst
platform, and metabolite-metabolite interaction networks
were constructed [19].

2.6 LASSO feature selection and
cross-validation for prostate cancer
classification

We performed 5-fold cross-validation on two classification
tasks: distinguishing between PCa and BPH and between
prostate cancer and prostatitis. First, using differential metabo-
lites as features, we applied LASSO regression for feature
selection, incorporating L1 regularization to reduce redundant
features and minimize the risk of overfitting. Additionally, we
selected differential metabolites with an area under the curve
(AUC) greater than 0.7 as input features. Next, in K-fold
cross-validation, we trained and compared the performance
of Support Vector Machine (SVM) and logistic regression
models, evaluating metrics such as accuracy, precision, recall,
F1-score, and receiving operating characteristic (ROC)-AUC.
Finally, based on the cross-validation results, we selected the
best-performing model and retrained it on the entire dataset
filtered by LASSO to ensure robust prediction accuracy and
generalizability in real-world applications.

2.7 Statistical analysis

Figures were created using R software 4.2.2 (R Foundation
for Statistical Computing, Vienna, Austria; available at
http://www.R-project.org). Statistical significance was set
at p < 0.05 or an adjusted p < 0.05. Differences between
the two groups were evaluated using the non-parametric
Mann-Whitney U test and the parametric Student’s t-test.
The adjusted p-value was calculated using the Benjamini-
Hochberg correction, and categorical variables were assessed
using the chi-square test.

http://www.R-project.org
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3. Results

3.1 Clinical characteristics of the study
participants
The clinical features of the 90 enrolled patients are summarized
in Table 1. No significant differences were observed in age
or PSA levels among the three clusters. However, significant
differences were found in the ratio of free PSA to total PSA,
prostate volume, PSA density, Prostate Imaging-Reporting and
Data System (PI-RADS) score, and the proportion of positive
findings from digital rectal examination (DRE), ultrasonogra-
phy, and contrast-enhanced ultrasonography (Table 1). Specif-
ically, the ratio of free-to-total PSA and prostate volume was
lower in PCa patients than in those with prostatitis or BPH. In
contrast, PSA density and PI-RADS scores were higher in PCa
patients than in those with BPH or prostatitis. Additionally,
the proportion of patients with positive findings from DRE,
ultrasonography, or contrast-enhanced ultrasonography was
higher in the PCa group compared to those with BPH or
prostatitis.

3.2 Quality control
Analytical quality control was maintained using a pooled QC
strategy. In the PCA, the QC samples clustered tightly (Fig. 1),
indicating the experimental platform’s stable performance
throughout the analytical process and the reliability of the
test data. Additionally, the minimal variation in principal

component 1 (PC1) for the QC samples further confirmed
the stability of the analysis (Fig. 2). Spearman’s correlation
analysis was performed between the first and last QC data
matrices, with the results shown in a Spearman correlation
scatter plot (Fig. 3). Although the correlation coefficients
were smallest between these two groups of QC samples, the
lowest correlation was still 0.998, highlighting the excellent
data quality. Furthermore, isotope-labeled internal standards
were added to the extracts, and sample pretreatment was
evaluated by the RSD% of the raw mass spectral response of
the internal standards in each sample. The RSD% ranged from
1.07% to 16.37%, which meets the technical requirements for
biological sample analyses.

3.3 Metabolomic profiling differences
between PCa and BPH
PCA analysis showed no significant differences in the
metabolic profiles between PCa and benign prostatic
hyperplasia (BPH) (Fig. 4A). However, the OPLS-DA score
scatter plot clearly distinguished PCa from BPH (Fig. 4B),
with R2Y and Q2 values of 0.728 and 0.0138, respectively,
indicating the model’s reliability. Through OPLS-DA,
metabolites with Variable Importance in Projection (VIP)
scores greater than 1.0 and p-values less than 0.05 were
identified as differential metabolites. After excluding
exogenous metabolites, 12 key metabolites that distinguish
PCa from BPH were identified using the LASSO regression
algorithm (Table 2), with six detected in ESI+ mode and six in

TABLE 1. Clinical characteristics of the study population.
Classification of diseases p-value2

PCa Prostatitis BPH
Variable Overall, N = 901 N = 30 (33%)1 N = 30 (33%)1 N = 30 (33%)1

Age (yr) 69.50 (7.14) 69.30 (7.82) 69.93 (8.17) 69.27 (5.32) 0.922
tPSA (ng/mL) 5.65 [4.46, 6.99] 6.12 [4.83, 7.21] 5.52 [4.55, 6.98] 4.77 [4.37, 6.93] 0.377
f/tPSA 0.21 [0.16, 0.26] 0.17 [0.11, 0.23] 0.22 [0.15, 0.28] 0.22 [0.19, 0.28] 0.018
PV (cm3) 39.97 [28.04, 52.68] 30.45 [22.15, 41.80] 43.00 [32.28, 53.91] 46.15 [36.27, 57.00] 0.005
PSAD 0.14 [0.11, 0.20] 0.21 [0.13, 0.26] 0.14 [0.11, 0.17] 0.12 [0.10, 0.14] 0.001
PI-RADS 3.00 [2.00, 4.00] 4.00 [3.00, 4.00] 3.00 [2.00, 4.00] 3.00 [2.00, 4.00] 0.006
DRE

Negative 66 (73.33%) 16 (53.33%) 25 (83.33%) 25 (83.33%)
0.010

Positive 24 (26.67%) 14 (46.67%) 5 (16.67%) 5 (16.67%)
Ultrasonography

Negative 55 (61.11%) 12 (40.00%) 17 (56.67%) 26 (86.67%)
0.001

Positive 35 (38.89%) 18 (60.00%) 13 (43.33%) 4 (13.33%)
CEUS

Negative 46 (51.11%) 9 (30.00%) 13 (43.33%) 24 (80.00%)
0.001

Positive 44 (48.89%) 21 (70.00%) 17 (56.67%) 6 (20.00%)
1Mean (SD); Median [IQR]; n (%); 2One-way ANOVA; Kruskal-Wallis rank sum test; Pearson’s Chi-squared test; Fisher’s exact
test.
Abbreviations: BPH, benign prostatic hyperplasia; CEUS, contrast-enhanced ultrasonography; DRE, digital rectal examination;
f/tPSA, ratio of free-to-total PSA; IQR, interquartile range; PCa, prostate cancer; PI-RADS, prostate imaging reporting and data
system; PSAD, PSA density; PV, prostate volume; SD, standard deviation; tPSA, total prostate-specific antigen.
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FIGURE 1. QC samples clustered tightly in the unsupervised PCA score plot, indicating stable analytical performance
throughout the batch and confirming the high quality of the metabolomic data. Blue dots: QC pooled batch QC samples;
red dots: samples tested in this project. Pareto scaling for PCA. PCA, principal component analysis; QC, quality control.

FIGURE 2. Time series plot of principal component 1 during the analytical batch is shown, with PCA analysis performed
using Pareto scaling. PCA, principal component analysis; PC1, principal component 1; std. dev, standard deviation.
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FIGURE 3. First and lastQC samples in the analytical batch showed a high correlation in Spearman correlation analysis,
confirming the high quality of the acquired untargeted metabolomic data. QC, quality control.

ESI− mode.
In ESI+ mode, levels of hexenoylcarnitine (AcCa(6:1))

and lysophosphatidylcholine (LysoPC(20:5/0:0)) were
significantly higher in PCa patients than in BPH patients,
while phytosphingosine levels were lower. In ESI− mode,
levels of (4E,15Z)-bilirubin IXa and bilirubin were elevated
in PCa patients compared to BPH patients, while levels of
C-mannosyl leucine and 3-hydroxymethylglutaric acid were
significantly lower in PCa patients than in BPH patients.
Overall, these results reveal significant metabolic differences
between PCa and BPH.
Fig. 5 presents the ROC analysis results, demonstrating

that these five key metabolites effectively differentiate BPH
from PCa, with AUC values greater than 0.7 and p-values
less than 0.05. Specifically, phytosphingosine (AUC = 0.703,
sensitivity = 73.3%, specificity = 63.3%), LysoPC(0:0/20:4)
(AUC = 0.722, sensitivity = 66.7%, specificity = 70.0%),
(4E,15Z)-bilirubin IXa (AUC = 0.724, sensitivity = 86.7%,
specificity = 53.3%), C-mannosyl leucine (AUC = 0.712, sen-
sitivity = 73.3%, specificity = 63.3%), and dihydrothymine
(AUC = 0.729, sensitivity = 70.0%, specificity = 70.0%)
showed excellent performance in differentiating PCa from
BPH.
In 5-fold cross-validation, we trained and compared the per-

formance of SVM and logistic regression models, ultimately

selecting logistic regression, which had an average ROC-AUC
of 0.78. The final model achieved an AUC of 0.852, with a
sensitivity of 80.0% and a specificity of 83.3%. These findings
suggest that the metabolic panel of differential metabolites
and their combination have strong diagnostic potential for
distinguishing BPH from PCa.

3.4 Metabolomic profiling differences
between prostatitis and PCa
PCA analysis showed no significant difference in sample dis-
tribution trends between patients with prostatitis and those with
prostate cancer (PCa) (Fig. 6A). However, OPLS-DA clearly
demonstrated a significant distinction between prostatitis and
PCa patients (Fig. 6B). The R2Y and Q2 values for the OPLS-
DA model were 0.709 and 0.166, respectively. VIP >1 and
p < 0.05 were used to identify differentiating metabolites.
After excluding exogenous metabolites, we used the LASSO
regression algorithm to select 19 key metabolites (Table 3), in-
cluding seven detected in ESI+ mode and 12 in ESI− mode. In
ESI+mode, N-acetylcadaverine levels were lower in prostatitis
patients than in PCa patients. In ESI− mode, glycohyocholic
acid and oxalic acid levels were higher in prostatitis patients,
while palmitoleic acid (Free Fatty Acid (FFA(16:1))) levels
were lower.
Fig. 7 shows the ROC analysis results, indicating that
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FIGURE 4. PCA and OPLS-DA of LC-MS metabolite profiles of patients with PCa or BPH. (A) The PCA model’s score
scatter plot for patients with PCa and BPH is displayed. The X-axis represents the first principal component (t[1]), and the Y-
axis represents the second principal component (t[2]). (B) The OPLS-DA model’s score scatter plot for patients with PCa and
BPH is displayed. The X-axis represents the predictive direction (t[1]), and the Y-axis represents the orthogonal direction (to[1]).
Abbreviations: BPH, benign prostatic hyperplasia; LC-MS, liquid chromatography-mass spectrometry; PCa, prostate cancer;
PCA, principal component analysis; OPLS-DA, orthogonal projections to latent structures-discriminate analysis.

TABLE 2. Essential metabolites differentially expressed in patients with PCa and those with BPH.
Metabolite name VIP p-value Fold change Theoretical M/Z AUC
Positive ion mode (ESI+)

Dihydrothymine 1.26814 0.001105 1.2210 129.06585 0.729
Phytosphingosine 1.71774 0.002970 0.6409 318.30027 0.703
Hexenoylcarnitine (AcCa(6:1)) 1.25281 0.014690 1.7700 258.16998 0.695
LysoPC(0:0/20:4) 1.24630 0.015860 1.3730 544.33977 0.722
LysoPC(20:5/0:0) 1.27482 0.019870 1.6950 542.32412 0.698
Ser-Leu 1.01905 0.031910 1.3110 219.13393 0.649

Negative ion mode (ESI−)
(4E,15Z)-bilirubin IXa 1.92984 0.001121 1.9020 583.25621 0.724
C-mannosyl leucine 1.49497 0.007691 0.6862 292.14018 0.712
Bilirubin 1.45246 0.008296 1.3790 585.27076 0.690
3-Hydroxymethylglutaric acid 1.52828 0.022000 0.7060 161.04555 0.643
Ribonic acid + xylonate 1.09243 0.037240 0.8644 165.04046 0.662
Ascorbic acid-2-sulfate 1.02840 0.037280 0.8347 254.98163 0.684

Note. Fold change: PCa versus BPH. Abbreviations: BPH, benign prostatic hyperplasia; ESI, electrospray ionization; PCa,
prostate cancer; VIP, variable importance in the projection; M/Z, mass-to-charge ratio; AUC, area under the curve.

the differentiation between prostatitis and PCa had an AUC
greater than 0.7 and p-values less than 0.05. The eight
key metabolites identified included pregnenolone sulfate
(AUC = 0.724, sensitivity = 76.7%, specificity = 63.3%),
bilirubin (AUC = 0.779, sensitivity = 76.7%, specificity =
76.7%), lysophosphatidylethanolamine (LysoPE(0:0/22:5n6))
+ LysoPE(22:5n3/0:0) (AUC = 0.721, sensitivity = 63.3%,
specificity = 70.0%), 5-hydroxyindole sulfate (AUC =
0.712, sensitivity = 66.7%, specificity = 80.0%), N-

acetylcadaverine (AUC = 0.722, sensitivity = 50.0%,
specificity = 83.3%), LysoPC(20:5/0:0) (AUC = 0.743,
sensitivity = 73.3%, specificity = 76.7%), dihydrothymine
(AUC = 0.749, sensitivity = 70.0%, specificity = 73.3%),
and LysoPC(0:0/20:5) (AUC = 0.707, sensitivity = 63.3%,
specificity = 76.7%). In 5-fold cross-validation, we trained
and compared the performance of SVM and logistic regression
models, ultimately selecting the SVM model, which achieved
an average ROC-AUC of 0.867. The final model had an
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FIGURE 5. ROC curve analysis of the selected essential metabolites for distinguishing PCa from BPH.Assessment of the
diagnostic performance of phytosphingosine (A), LysoPC (0:0/20:4) (B), (4E,15Z)-bilirubin IXa (C), C-mannosyl leucine (D),
dihydrothymine (E), and the combination of these six metabolites (F). Abbreviations: AUC, area under the ROC curve; BPH,
benign prostatic hyperplasia; PCa, prostate cancer; ROC, receiver operating characteristic; LysoPC, lysophosphatidylcholine.

FIGURE 6. PCA and OPLS-DA analyses of LC-MS metabolite profiles from patients with prostatitis and PCa. (A)
Score scatter plot of the PCA model for patients with prostatitis and PCa. The X-axis represents the first principal component
(t[1]), and the Y-axis represents the second principal component (t[2]). (B) Score scatter plot of the OPLS-DA model for patients
with prostatitis and PCa. The X-axis represents the predictive direction (t[1]), and the Y-axis represents the orthogonal direction
(to[1]). Abbreviations: LC-MS, liquid chromatography-mass spectrometry; PCa, prostate cancer; PCA, principal component
analysis; OPLS-DA, orthogonal projections to latent structures-discriminate analysis.
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TABLE 3. Essential metabolites differentially expressed in patients with prostatitis and those with PCa.
Metabolite name VIP p-value Fold change Theoretical M/Z AUC
Positive ion mode (ESI+)

N-acetylcadaverine 1.41458 0.0009473 0.2987 145.13354 0.722
Dihydrothymine 1.25934 0.0014270 0.8149 129.06585 0.749
LysoPC(20:5/0:0) 1.63287 0.0025250 0.5383 542.32412 0.743
LysoPE(0:0/22:5n6) + lysoPE(22:5n3/0:0) 1.51744 0.0040010 0.6704 528.30847 0.721
LysoPC(0:0/20:5) 1.19229 0.0082190 0.6437 542.32412 0.707
Phytosphingosine 1.11388 0.0206700 0.5559 318.30027 0.649
LysoPE(22:6/0:0) 1.11551 0.0288400 0.7336 526.29282 0.677

Negative ion mode (ESI−)
Bilirubin 1.66397 0.0001732 0.6433 585.27076 0.779
5-hydroxyindole sulfate 2.05320 0.0022320 0.5136 212.00230 0.712
Pregnenolone sulfate 1.47534 0.0031050 0.6668 395.18977 0.724
Pregnenolone-3,21-disulfate 1.22052 0.0069210 0.7424 245.06711 0.689
6-hydroxyindole sulfate 1.64359 0.0074630 0.5147 212.00230 0.673
Dehydroepiandrosterone sulfate 1.50858 0.0111700 0.7362 367.15847 0.696
Glycohyocholic acid 2.14660 0.0152300 1.4900 464.30176 0.698
M2X-RT295MZ165 1.93040 0.0195500 0.5873 165.09210 0.688
Palmitoleic acid (FFA(16:1)) 2.34019 0.0201800 0.3921 253.21730 0.664
C-mannosyl leucine 1.38037 0.0217900 1.2900 292.14018 0.668
Oxalic acid 1.10862 0.0301200 1.4430 88.98803 0.687
M2X-RT307MZ165 1.52404 0.0492800 0.6162 165.09210 0.654

Note. Fold change: prostatitis versus PCa. Abbreviations: ESI, electrospray ionization; PCa, prostate cancer; VIP, variable
importance in the projection; M/Z, mass-to-charge ratio; AUC, area under the curve; LysoPC, lysophosphatidylcholine; LysoPE,
lysophosphatidylethanolamine; FFA, Free Fatty Acid.

AUC of 0.891, with a sensitivity of 76.7% and a specificity
of 90.0%. These results indicate that the metabolic panel of
differential metabolites and their combinations have strong
diagnostic potential for distinguishing between prostatitis and
PCa patients.

3.5 Metabolic pathway analysis of
differential metabolites and construction of
the metabolite-metabolite interaction
network

Class analysis of the chemical properties of metabolites that
differed between groups was conducted based on the struc-
tural annotation results from untargeted metabolomics with
in-depth coverage (Fig. 8). A total of 712 metabolites were
identified across 21 major classes, with 120 fatty acid species,
accounting for 16.8% of the total. Metabolic phenotypes
were then differentiated using PCA and OPLS-DA. Of the
109 differential metabolites identified in comparisons between
prostatitis and PCa, fatty acid species were the most abun-
dant, with 30 species. Fatty acid metabolites represented the
largest proportion of all differential metabolites when com-
paring PCa and prostatitis patients. To explore the pathway-
based metabolic features, we performed a metabolic pathway
analysis on the differential metabolites (Fig. 9). Our find-

ings suggest that several metabolic pathways, including the
biosynthesis of unsaturated fatty acids, play key roles in PCa.
Additionally, the metabolite-metabolite interaction network
(Fig. 10) highlighted hypoxanthine, oxalic acid, and succinic
acid as central nodes for potential functional relationships
among a wide range of annotated metabolites.

4. Discussion

Early diagnosis of PCa is crucial for improving patient sur-
vival. However, when PSA levels are in the range of 4–
10 ng/mL, distinguishing between PCa, BPH and prostatitis
becomes challenging, often leading to unnecessary biopsies.
Therefore, there is an urgent need to explore new biomarkers
to optimize clinical decision-making [20]. In this study, LC-
MS-based untargeted metabolomics analysis revealed signif-
icant metabolic differences between patients with PCa, BPH
and prostatitis. OPLS-DA showed distinct metabolic pheno-
types among the three groups. Key metabolites, including
fatty acids, phospholipids and bilirubin, were identified using
LASSO regression, demonstrating potential diagnostic value
in differentiating prostate diseases. In K-fold cross-validation,
we trained and compared SVM and logistic regression models,
evaluating their performance based on accuracy, precision, re-
call, F1-score and ROC-AUC. The best-performingmodel was
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FIGURE 7. Displayed is the ROC curve analysis of the selected essential metabolites for distinguishing prostatitis
from PCa. Assessment of the diagnostic performance of pregnenolone sulfate (A), bilirubin (B), LysoPE(0:0/22:5n6)
+ LysoPE(22:5n3/0:0) (C), 5-hydroxyindole sulfate (D), N-acetylcadaverine (E), LysoPC(20:5/0:0) (F), dihydrothymine
(G), LysoPC(0:0/20:5) (H), and the combination of these eight metabolites (I). Abbreviations: AUC, area under the
ROC curve; BPH, benign prostatic hyperplasia; PCa, prostate cancer; ROC, receiver operating characteristic; LysoPE,
lysophosphatidylethanolamine; LysoPC, lysophosphatidylcholine.

selected and retrained on the entire dataset after the LASSO
feature selection. The combination of multiple metabolites
significantly improved the ability to distinguish PCa fromBPH
and prostatitis, with AUC values reaching 0.852 and 0.891,
respectively. These results highlight the promising potential
of metabolomics in the diagnosis of prostate diseases.
In recent years, metabolomics has garnered significant atten-

tion for its role in screening and early diagnosis of PCa. By an-
alyzing metabolites in blood and urine samples, metabolomics

can identify metabolic signatures associated with PCa, offering
a precise tool for early detection [21]. This approach uncovers
disease-related metabolic disruptions and is now widely rec-
ognized as a noninvasive diagnostic method [22, 23]. This
study’s PCA and OPLS-DAmodels revealed significant differ-
ences in the metabolic profiles of patients with PCa, BPH and
prostatitis, particularly in pathways involving fatty acid, phos-
pholipid, and sphingolipid metabolism. Key metabolites iden-
tified through LASSO regression included fatty acid metabo-
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FIGURE 8. Classification and quantification of significantly different metabolites (p< 0.05). (A) Differential metabolites
in the comparison between PCa and BPH. (B) Differential metabolites in the comparison between PCa and prostatitis. The red
boxes indicate that fatty acid metabolites represent a significantly larger proportion in both comparisons. Abbreviations: BPH,
benign prostatic hyperplasia; PCa, prostate cancer; LysoPC, lysophosphatidylcholine; LysoPI, lysophosphatidylinositol; LysoPE,
lysophosphatidylethanolamine; LysoPA, lysophosphatidic acid.

FIGURE 9. The size of the bubbles is indicative of the pathway impacts, while the depth of the bubbles corresponds
to the p value. (A) Pathway analysis with MetaboAnalyst of metabolites differing between PCa and BPH. (B) Pathway analysis
with MetaboAnalyst of metabolites differing between PCa and prostatitis. Abbreviations: BPH, benign prostatic hyperplasia;
PCa, prostate cancer.
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FIGURE 10. Construction of the metabolite interaction network reveals the metabolic processes in prostate cancer,
highlighting the interactions betweenmetabolites such as succinic acid and hypoxanthine. FAD, flavin adenine dinucleotide;
NADP, nicotinamide adenine dinucleotide phosphate; NADH, nicotinamide adenine dinucleotide (reduced); ADP, adenosine
diphosphate.

lite hexenoylcarnitine and phospholipid metabolite LysoPC
(20:5/0:0), which were significantly elevated in PCa patients.
In contrast, the sphingolipid metabolite phytosphingosine was
higher in BPH patients. These findings suggest a strong link
between lipid metabolism and PCa progression.
A clinical study analyzing serum metabolites from 1812

Finnish men identified 49 metabolites linked to PCa-specific
survival, including long-chain polyunsaturated fatty acids,
phosphatidylcholine and glutamate. These metabolites were
significantly correlated with a higher mortality risk in PCa
patients [24]. Other studies have indicated that elevated
levels of long-chain omega-3 polyunsaturated fatty acids are
associated with a higher risk of prostate cancer, particularly
high-grade cancers [25].
Metabolic reprogramming, a recognized hallmark of cancer,

plays a crucial role in cancer cell proliferation, metastasis, and
drug resistance [26]. Lipid metabolism reprogramming is con-
sidered a key driver in PCa development and progression since
fatty acid metabolism is vital for energy storage, biomembrane

synthesis, and the production of tumor signaling molecules
[27–29]. Research has demonstrated that overexpression of
fatty acid synthase is linked to PCa aggressiveness and may
serve as a crucial prognostic marker [30, 31]. Additionally,
increased fatty acid uptake in PCa tissues has been confirmed,
and targeting fatty acid uptake has been proposed as an effec-
tive therapeutic strategy [32–34].
In this study, ROC curve analysis identified key metabo-

lites with AUC values ≥0.70. Among them, dihydrothymine
demonstrated AUC values of 0.729 and 0.749, showing strong
diagnostic capability in distinguishing PCa, BPH and pro-
statitis, with elevated levels of dihydrothymine found in PCa
serum samples. Research has indicated that as a metabolic
marker of thymine, abnormally high levels of dihydrothymine
may induce cytotoxicity [35]. Combining multiple metabo-
lites, such as phytosphingosine, bilirubin and dihydrothymine,
further enhanced diagnostic sensitivity and specificity, with
AUC values reaching 0.852 and 0.891. These results suggest
that integrating metabolomic analyses of fatty acids, phospho-
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lipids, and pyrimidine metabolites can significantly improve
the accuracy of early PCa detection. Consistent with our find-
ings, other researchers have also explored the value of serum
organic acid metabolites in differentiating prostatitis, BPH
and PCa. Their study revealed that organic acid metabolites
detected through LC-MS can effectively distinguish between
these prostate conditions, offering new possibilities for nonin-
vasive early diagnosis [36]. Additionally, another study iden-
tified 18 lipid-related metabolites through serum metabolomic
profiling. ROC curve analysis showed that these metabolites
hold strong potential for differentiating PCa from BPH in
patients within the PSA gray zone (4–10 ng/mL), with high
diagnostic potential [37].
Metabolic pathway enrichment analysis revealed significant

differences in several metabolic pathways between PCa, BPH
and prostatitis, with unsaturated fatty acid biosynthesis, phos-
pholipid metabolism, and pyrimidine metabolism being the
key pathways. The elevation of unsaturated fatty acid metabo-
lites in the serum of PCa patients underscores the pivotal role
of fatty acid metabolism in tumor growth and proliferation.
Studies have reviewed the role of polyunsaturated fatty acids
(PUFA) in prostate cancer, showing that ω-6 PUFA is linked to
PCa progression [27]. Additionally, phospholipid metabolite
levels have been shown to effectively differentiate prostate
cancer from benign prostatic hyperplasia [38]. The critical
role of dihydrothymine in pyrimidine metabolism highlights
the increased demand for DNA synthesis in PCa cells, as
pyrimidine metabolism dysfunction has been closely linked to
cancer progression [39]. Through metabolite interaction net-
work analysis, metabolites such as hypoxanthine, oxalate, and
succinate further illustrate the complexity of metabolic repro-
gramming in PCa. Notably, hypoxanthine-containing metabo-
lites have been shown to effectively distinguish between BPH,
prostate cancer, high-Gleason score PCa, and low-Gleason
score PCa [40]. Furthermore, research has summarized the
roles of tricarboxylic acid cycle metabolites in cancer, showing
that metabolites such as hypoxanthine and succinate not only
contribute to energy production but also drive tumor growth
and spread by regulating epigenetics, cellular signaling, and
redox balance [41].

5. Limitations

Several potential confounding factors may have influenced the
observed metabolic profiles in this study. Despite participants
fasting overnight, dietary habits prior to the study could still
introduce variability, as high-fat or low-fat diets may impact
lipid metabolism, particularly fatty acid metabolites. Physical
activity levels may also play a role, as regular exercise is
known to alter fatty acid metabolism, potentially affecting
comparisons between PCa, BPH and prostatitis patients. Al-
though participants who had used 5α-reductase inhibitors or
medications affecting PSA levels were excluded, other medi-
cations, such as statins or anti-inflammatory drugs, may have
influenced lipid and phospholipid metabolism. Comorbidities,
including undiagnosed or milder conditions such as diabetes or
cardiovascular diseases, could also affect metabolic pathways,
despite excluding those with severe diseases. Additionally,
age-related metabolic changes and hormonal fluctuations, par-

ticularly variations in testosterone levels, could act as con-
founding factors, even though the study population was limited
to individuals over 50 years of age. These factors should be
considered when interpreting the metabolic profiles observed
in this study.
However, several limitations should be acknowledged. (1)

Patients with prostatitis and BPH in this study did not undergo
saturation biopsy; thus, there is a small possibility that some
may have undiagnosed PCa. (2) Untargeted metabolomics
does not provide precise quantification of metabolite abun-
dance, necessitating further analysis of key metabolites us-
ing targeted metabolomic techniques. (3) While potential
metabolic biomarkers were identified in serum samples, these
findings need to be validated in other biofluids and matched
tissue samples. (4) As this study was conducted at a single
center with a relatively small sample size, validation in a
larger multicenter cohort is required. (5) Metabolomics can
be influenced by various factors, such as food intake, dietary
habits and exercise, which were not controlled for in this study.

6. Conclusions

This study identified key metabolic biomarkers using LC-
MS, achieving AUC values of 0.852 for PCa versus BPH and
0.891 for PCa versus prostatitis through LASSO regression
and machine learning models. Fatty acid metabolism was a
key feature of PCa. These findings suggest that a noninvasive
metabolic biomarker panel could improve early PCa detection,
particularly in the PSA gray zone, while reducing unnecessary
biopsies. Validation in larger cohorts is still needed.
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