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Abstract
Diabetes is a leading global health concern, with millions of deaths linked to diabetes
and related complications according to the World Health Organization (WHO). Early
and accurate prediction is crucial for effective management. This study investigates
the potential of a stacking ensemble approach for predicting diabetes in men (n =
5598). The ensemble leverages a Feature Tokenizer transformer, a deep learning
technique, alongside various machine learning models. SHAP (SHapley Additive
exPlanations) is used to enhance model interpretability. Compared to other stacking
methods and standalone models, the proposed ensemble with a Random Forest meta-
classifier, XGBoost, Feature Tokenizer Transformers (FT-Transformer) and LightGBM
achieved superior performance (accuracy: 0.8786, precision: 0.7989, recall: 0.8171,
F1-score: 0.8079, Area Under the Curve (AUC): 0.8618). These findings suggest that
stacking ensembles with deep learning and explainable artificial intelligent (AI) hold
promise for improving diabetes prediction in men, potentially leading to better clinical
decision-making and patient outcomes.
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1. Introduction

Diabetes mellitus (DM), commonly referred to as diabetes,
encompasses a spectrum of metabolic disorders characterized
by chronic hyperglycemia. These disorders typically arise
from disruptions in either insulin secretion, insulin action,
or a combination of both factors [1]. The World Health
Organization (WHO) has documented a significant increase
in diabetes-related mortality, with a 70% rise since the year
2000. This alarming trend has elevated diabetes to one of the
ten leading causes of death globally [2]. In 2019 alone, an
estimated two million deaths were attributed to diabetes and
its associated kidney complications [3]. Diabetes manifests in
three primary forms: Type 1 (T1DM), Type 2 (T2DM) and
Gestational Diabetes (GD).While all three forms elevate blood
sugar levels, their underlying etiologies differ. T1DM, an
autoimmune disease, results from the body’s attack on insulin-
producing cells. Typically diagnosed in childhood, T1DM
necessitates lifelong insulin supplementation for management
[4]. In contrast, T2DM arises from either insulin resistance
or insufficient insulin production. While the prevalence of
T2DM is on the rise for both sexes, men tend to be diagnosed
at a younger age and with a lower body fat mass compared to
women. Notably, research indicates an estimated 17.7 million
greater prevalence of diabetes mellitus in men compared to
women [5].

While ongoing research actively explores advancements in

diabetes treatment and potential cures, a universally accepted
cure remains elusive within the scientific community. Fortu-
nately, effective management strategies exist, often incorpo-
rating diet, exercise and sometimes medication. Within the
realm of preventative and control measures, as advocated by
scientists, physical activity plays a primary and pivotal role
alongside medicinal interventions and dietary modifications
[6]. However, early detection and diagnosis of diabetes remain
crucial in contemporary healthcare settings. Timely diagnosis
not only aids in preventing complications but also significantly
reduces the risk of developing other chronic conditions like
kidney disease, heart attack and stroke. Given the complexities
of diabetes and the critical need for personalized care plans,
prioritizing resources for disease prediction in large popula-
tions is essential. This is particularly important considering
the phenomenon of physician burnout, often attributed to the
demands of electronic health record (EHR) systems [7]. Herein
lies the significance of researcher-developed tools and systems
designed to assist in the prediction and classification of dia-
betes.

Diabetes prediction has been a well-studied area in
healthcare, encompassing diagnosis, classification and
treatment strategies. Recent research leverages various
machine learning (ML) and deep learning (DL) algorithms
to identify and predict diabetes [8–10]. These algorithms
have yielded significant improvements over traditional and
basic ML methods. However, while DL excels in handling
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diverse data types like natural language, audio and images,
its application to tabular datasets presents challenges. These
challenges include difficulties in optimizing DL models due to
missing data, the presence of mixed feature types (numerical,
ordinal, categorical), and the lack of inherent structural
knowledge compared to well-defined structures in text or
image data [11]. Nevertheless, Shwartz-Ziv et al. [12] (2022)
highlight those ensembles combining XGBoost models with
DL models often outperform standalone XGBoost models
across various datasets.
While existing research often focuses on both genders,

women or gestational diabetes alone [13–15], a gap
exists in developing models specifically for male diabetes
classification. To address this gap, we propose an ensemble
model tailored for tabular data. This ensemble combines a
Feature Tokenizer Transformer (FTT) [16], featuring a Feature
Tokenizer component and adapted Transformer layers [17],
with XGBoost [18], LightGBM [19] and Random Forest (RF)
[20]. For comparative purposes, we additionally employed
other ML and DL methods like TabNet [21] and CatBoost
[22] on a large dataset from the Korea National Health and
Nutrition Examination Survey (KNHANES) for male diabetes
prediction. Furthermore, to create a robust classification
model with Explainable Artificial Intelligence (XAI), we
utilized SHapley Additive exPlanations (SHAP) [23]. This
approach, recognized in numerous diabetes classification
studies [8, 24–28], enhances model interpretability, revealing
the inner workings of both DL and ML models. This is
particularly valuable for our proposed method, which might
be initially complex to understand. By integrating SHAP, the
model can provide insights not only for data scientists but also
for physicians, potentially guiding future research directions
and clinical applications.
This paper is organized as follows. The next section (Section

2) reviews relevant background literature. Section 3 details
the proposed approach, including a description of the datasets
and algorithms employed. Section 4 presents the model’s
performance and offers a concise rationale for the chosenmeth-
ods. Section 5 delves into interpretability using XAI-SHAP
techniques. Finally, Section 6 concludes by summarizing
the key findings and outlining promising directions for future
research.

2. Literature review

A significant surge in research has emerged in recent years
focusing on the application of ML and DL models for diabetes
patient identification. Ensemble techniques, which combine
multiple individual models to enhance prediction performance,
have gained particular traction in this domain. Notably, Dutta
et al. [29] (2022) achieved a high accuracy of 0.735 and an
area under the Receiver Operating Characteristic (ROC) curve
(AUC) of 0.832 using an ensemble pipeline. This pipeline
incorporated a weighted ensemble of RF, Naive Bayes (NB),
XGBoost, Decision Tree (DT), and LightGBM (LGB) with
grid search optimization, missing value imputation, feature se-
lection, and K-fold cross-validation. Furthermore, their model
achieved this accuracy using only four to five interpretable
features: body mass index (BMI), age, average systolic and

diastolic blood pressure and occupation.
While ensemble models offer strong performance, alterna-

tive approaches exist. Chang et al. [30] (2023) explored using
an artificial neural network (ANN) on the 7th KNHANES
dataset (2016–2018), focusing on 11 nutritional intake features
and achieving an accuracy of 0.813. Similarly, Choi et al.
[31] (2023) employed a support vector machine (SVM) model
on the 5th KNHANES data, attaining an AUC of 0.731 for
prediabetes prediction. Additionally, Kumari et al. [32]
(2021) utilized a soft voting ensemble combining RF, Logistic
Regression (LR), and NB, achieving an accuracy of 79.04%
along with good precision and recall.
Beyond prediction accuracy, XAI methods like SHAP, Lo-

cal Interpretable Model-Agnostic Explanations (LIME) and
Explain Like I’m 5 (ELI5) have been increasingly employed
to provide insights into the decision-making processes of ML
and DL models. These methods can be further enhanced by
user interface integration, as shown in Table 1.

3. Materials and methods

In the pursuit of constructing a robust and interpretable stack-
ing ensemble model for the prediction of diabetes, this study
undertook a series of systematic steps, outlined in Fig. 1.

3.1 Data-set description
This study leveraged data from the Korea National Health
and Nutrition Examination Survey (KNHANES) conducted
between 2019 and 2022 (further details on KNHANES design
and data can be found in [37]). The KNHANES, a cross-
sectional survey by the Korea Centers for Disease Control
and Prevention (KCDC), involved 13,152 men. It gathers
information on various aspects of health through three com-
ponents: health interviews, health examinations, and a dietary
survey. These components provide data on socioeconomic
status, health behaviors, quality of life, healthcare use, anthro-
pometric measurements, biochemical and clinical profiles for
non-communicable diseases and dietary intake.

3.2 Data preprocessing
3.2.1 Data cleaning and splitting for model
training
Data preprocessing is crucial for building robust models, es-
pecially when dealing with tabular data [38]. In this study,
data from four years (presumably from KNHANES) was com-
bined with information on 13,152 men, resulting in a dataset
with 632 features. From these features, the column labeled
“HE_DM_HBA1C” was selected as the target variable. This
column indicates whether a participant has diabetes based on
three criteria: fasting blood glucose above 126 mg/dL, physi-
cian diagnosis, or use of hypoglycemic agents (medications
that lower blood sugar).
Since the data originated from a survey, some questions

were optional, resulting in uneven response rates across cer-
tain columns. Consequently, these columns had missing data
exceeding a 50% threshold. Fortunately, they contained non-
essential or supplementary information, justifying their re-
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TABLE 1. Recent research on XAI for DM diagnosis.
Article Dataset Models XAI method F1-Score Accuracy Other metrics

Guha et al. [24]
(2020)

ESDRPD
dataset (520
patients)

Random Forest SHAP/LIME/ELI5 0.95 95.00%
Precision: 0.95
Recall: 0.94
AUC: 0.98

Kibria et al. [28]
(2022)

PIMA [33]

Soft Voting
Ensemble of
XGBoost and
Random Forest

LIME/SHAP 0.95 90.00%

Precision: 0.88
Recall: 0.89
AUC: 0.95

Joseph et al. [8]
(2022)

PIMA dataset
and ESDRPD

dataset

Bayesian-Optimized
Hyperparameter

TabNet

SHAP/LIME/
TabNet/ELI5 0.88 92.20% Precision: 0.86

Specificity: 0.95

Vishwarupe et al.
[26] (2022)

Local Pune
dataset (1367
patients)

Random Forest SHAP/LIME/ELI5 N/A 82.23% N/A

Curia et al. [34]
(2023)

Dhaka dataset
(306 patients)

XGBoost LIME 1.00 100.00% Precision: 1.00

Tasin et al. [27]
(2023)

PIMA XGBoost with
ADASYN LIME/SHAP 0.81 88.50%

Precision: 0.82
Recall: 0.80

Dharmarathne et
al. [35] (2024)

Public
diabetes

dataset [36]

Self-explainable
interface with
XGBoost

SHAP 0.65 77.00%
Precision: 0.60
Recall: 0.73
AUC: 0.82

XGBoost: XGBoost Classifier; Random Forest: Random Forest Classifier; XGBoost with ADASYN: XGBoost with ADASYN
over-sampling method. XAI: Explainable Artificial Intelligence; ESDRPD: Early-stage diabetes risk prediction dataset; SHAP:
SHapley Additive exPlanations; LIME: Local Interpretable Model-Agnostic Explanations; ELI5: Explain Like I’m 5; AUC: Area
Under the Curve; PIMA: Pima Indian Diabetes Dataset; N/A: Not Available; ADASYN: Adaptive Synthetic Sampling.

FIGURE 1. Schematic representation of the analysis process in this study. The data was first loaded and then prepared
(preprocessed) to ensure its quality and suitability for analysis. After preprocessing, the most important features influencing
the target variable were identified through a feature selection process. Next, DL and ML models were built and trained on the
preprocessed datawith the selected features. Once trained, themodel’s hyperparameters were adjusted to optimize its performance.
Following this optimization, the best performing models were chosen to create an ensemble model. Finally, SHAP interpretation
was conducted to gain insights into the ensemble model’s predictions. SHAP: SHapley Additive exPlanations.

moval. To address this challenge, any column with missing
values exceeding 50%was excluded from the dataset. Further-
more, to ensure data relevance to men’s diabetes prediction,
we excluded males under 19 years old and those lacking an
“HE_DM_HBA1C” value. Additionally, existing diabetes-
related columns, such as blood glucose, glycated hemoglobin,
and insulin injection data, were excluded. This data cleaning
process resulted in a final dataset containing a substantial

number of samples (5598) with 195 variables. In the field
of ML, cross-validation is a commonly used technique for
evaluating model performance on limited and tabular datasets
[38]. However, when dealing with DL, particularly for com-
plex models, cross-validation can be computationally expen-
sive and time-consuming [39]. Therefore, we opted for an
alternative approach. Following established practices in ML,
we employed a stratified 80/10/10 train-test-validation split on
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the preprocessed data (Géron, 2019) [40]. This approach is
particularly recommended for DL models due to their data re-
quirements. The dataset was stratified and split into a training
set (80%), a validation set (10%), and a hold-out test set (10%).
The training set will be used to build the model, the validation
set will be used for hyperparameter tuning, and the hold-out
test set will be used for the final evaluation of the model’s
performance on unseen data.

3.2.2 Feature scaling and missing value
handling
To ensure all features contribute equally and improve the
model’s ability to generalize to unseen data, we addressed the
different scales of numerical and categorical variables. We
first separated the dataset’s features into these two categories.
For numerical features, we applied a scaling technique to
standardize their values within a common range, like −1 to
1. This prevents features with large scales from dominating
the model’s predictions and ensures all features have a propor-
tional influence. For example, “age” in years might be scaled
to this range. For those with a natural order (like age), we
employed encoding by category (e.g., younger, adult, elder)
represented by numbers (0, 1, 2). This approach not only
improves the interpretability of the model’s results but also
increases its sensitivity to meaningful variations within these
categories, potentially leading to better accuracy and broader
applicability. Finally, we addressed columns with missing
values exceeding 50%. We will use imputation techniques:
mean imputation for numerical data and mode imputation for
categorical data.

3.2.3 Data augmentation
Our dataset exhibited class imbalance, a common challenge
where one class has significantly more samples than another
[41]. In our case, there were 3847 non-diabetic patients com-
pared to 1750 diabetic patients out of 5598 total samples. This
imbalance can hinder the performance of standard classifiers.
To address this, we employed the Synthetic Minority Over-
sampling Technique (SMOTE) by Chawla et al. [42] (2002).
SMOTE tackles class imbalance by creating synthetic samples
for the under-represented class (diabetic patients). This is
achieved by interpolating between existing minority samples
and their nearest neighbors in the feature space. By applying
SMOTE to the training dataset, we were able to create a
balanced dataset with 2727 samples each for both diabetic and
non-diabetic classes. To implement SMOTE, we leveraged the
imbalanced-learn library. This library, compatible with scikit-
learn, offers a comprehensive suite of tools specifically tailored
for addressing classification tasks with imbalanced datasets.

3.2.4 Feature selection
Several ML models possess inherent feature selection
mechanisms. Random Forest, XGBoost, LightGBM and
CatBoost fall into this category. Conversely, TabNet and FT-
Transformer models utilize attention layers to assess feature
importance. However, these approaches present limitations.
The generated feature importance scores exhibit variability
contingent upon the employed classifier. Additionally, solely
relying on accuracy for feature inclusion or exclusion might

be inadequate [43]. Therefore, a feature selection method
that identifies all relevant features, rather than solely focusing
on minimal optimal ones, is desirable. Our objective is to
achieve a comprehensive understanding of the underlying
phenomenon, encompassing all contributing factors, not just
non-redundant ones. This approach not only helps us to
mitigates the risk of overfitting that can arise from a high
number of features.
For this reason, we opted for the BorutaShap method [44] as

our preferred approach for significant feature selection within
this study. BorutaShap, a Python wrapper method, integrates
the Boruta feature selection algorithm [44] with SHAP values.
It is specifically designed for seamless operation with tree-
based learners such as Random Forest, XGBoost, LightGBM
and CatBoost. The Boruta method generates shadow features,
which are essentially identical copies of the original features.
However, these shadow features incorporate randomization to
eliminate any potential associations with the outcome variable.
Subsequently, both the original features and their correspond-
ing shadow-shuffled equivalents are incorporated into the tree-
based model to forecast the target feature, effectively lever-
aging the unique capabilities of these specific learners. The
algorithm then computes the mean decrease in accuracy (MD)
for both the shadow-shuffled features and the actual features
within (Stree). This calculation is represented by the following
formula:

MD =
1

stree

∑stree
s=1

∑
t∈OOB I(yt=f(xt))−

∑
t∈OOB I(yt=f(xt

n))
|OOBPE| (1)

Within this formula xt represents predictor variables (xt∈
Rn), yt is the target feature (yt ∈ R) for n inputs in the set T (t
= 1, 2, …, T), the function I is an indicator function, OOBPE
is the Out-of-Bag Predictive Error, yt = f(xt) represents pre-
dicted values before permutation, and yt = f(xtn) represents
the predicted values post permutation. By using a two-sided
hypothesis test (t-test) to compare actual and shadowed values,
the algorithm calculates a Z-score:

Z-score =
M

S
(2)

Where S denotes the standard deviation of accuracy losses.
A specific threshold is established, wherein the Z-score of
the actual feature must surpass the highest Z-score (Zmax)
obtained from randomized shadow features. Furthermore, to
guarantee consistency in the shapely important values (SHAP
values), the BorutaShap method compares each original fea-
ture to its corresponding shadow feature.
We used the BorutaShap library to find significant features

for each model (Random Forest, XGBoost, LightGBM and
CatBoost) with default settings and 10-fold cross-validation.
BorutaShap was run for 50 iterations. It identified the optimal
subset of features by evaluating how much each feature im-
proved the performance of all models compared to using the
entire feature set. To assess this improvement, we employed
various metrics including accuracy, precision, recall, F1-score
and AUC.
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3.3 Model architecture
This research utilizes ensemble stacking, a meta-learning tech-
nique for classification tasks [45]. In ensemble stacking,
multiple base ML models are first trained independently on
the entire training dataset. These diverse base learners capture
different aspects of the data. Then, the predictions generated
by the base models become the new features for a final meta-
classifier. This meta-classifier learns to combine the strengths
of the base models, resulting in a more robust and accurate
prediction model.
In this proposed methodology, we have used the ensemble

of ML algorithms such as RF, XGBoost, LightGBM and Cat-
Boost with FT-Transformer. To enhance the efficacy of these
models, the Optuna framework [46] was harnessed for hy-
perparameter fine-tuning, thereby optimizing their predictive
performance. The above-mentioned algorithms have been
ensembled with a stacking classifier to enhance accuracy. To
select meta-model, we make a comprehensive comparison
between stacking model for most efficient prediction model
for men’s diabetes individuals. These algorithms are briefly
discussed in this section.

• RF: Random Forest [20], an ensemble method that com-
bines numerous decision trees. Known for its robustness
and accuracy, this technique combines the predictions of di-
verse trees to deliver reliable results, demonstrating resilience
against noise and overfitting.

• XGBoost [18] or eXtreme Gradient Boosting, extends
gradient boosting by employing a unique regularization term
(e.g., L1/L2) and parallel computing to achieve superior ac-
curacy across a diverse range of tasks, including regression,
classification and ranking.

• LightGBM [19] builds utpon the Gradient Boosting
Decision Tree (GBDT) with innovative techniques like
Gradient-based One-Side Sampling and the Histogram-based
Algorithm. These methods accelerate training time, reduce
memory usage, and ultimately enhance the precision of its

GBDT model.
• CatBoost [22] a cutting-edge gradient boosting toolkit,

boasts distinct advantages over traditional GBDTmodels. Un-
like traditional gradient boosting models, CatBoost handles
categorical features directly, eliminating the need for sepa-
rate preprocessing steps. This saves time and simplifies the
modeling process. Additionally, CatBoost analyzes not only
individual features but also their interactions. By considering
these feature combinations, the model can capture more com-
plex relationships within the data, potentially leading to more
accurate predictions.
• TabNet [21], a robust deep learning model, has

demonstrated commendable performance across diverse
datasets. The architecture encompasses an encoder module
that capitalizes on sequential decision steps to encode features.
It employs sparse learned masks to select pertinent features
for each row through an attention mechanism. A distinct
characteristic of TabNet is its utilization of sparsemax layers,
compelling the selection of a compact set of features. This
approach deviates from traditional all-or-nothing feature
selection, allowing for nuanced decisions via learnable
masks. This not only circumvents the rigidity of hard feature
thresholds but also enables a soft, differentiable approach to
feature selection.

• The FT-Transformer (Feature Tokenizer + Transformer)
model [16] adapts the Transformer architecture [17] for tabular
data. It simplifies the process by transforming all features
(both categorical and numerical) into tokens. These tokens
are then fed into a series of stacked Transformer layers, where
each layer analyzes the features of individual data points.
Within the Transformer component, a special Classification
(CLS) token is added and processed alongside the other tokens
through multiple layers. This pre-normalization step improves
optimization and overall performance. Finally, the model uses
the final representation of the (CLS) token for prediction. The
FT-Transformer, as described earlier and depicted in Fig. 2.

FIGURE 2. Concept of feature tokenizer + transformer illustrated by Gorishniy et al. [16]. (A) Feature Tokenizer: This
part transforms raw features (in this case, two categorical and three numerical) into tokens for the Transformer to process. (B)
Transformer Layer: This layer analyzes the relationships between the tokens, ultimately using them to make predictions.
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• Proposed ensemble stacking classifiers method: While tra-
ditional ML models excel at finding patterns in data, combin-
ing their strengths can lead to even better predictions. Stacking
ensemble [45], by combining multiple models, takes a two-
stage approach unlike methods like majority voting. In stage
one, diverse basemodels (ML orDL) are trained independently
on the entire dataset. These models capture various aspects
of the data. The key difference from voting lies in stage
two. Stacking uses the predictions from the base models as
new features, creating a richer dataset. Each data point now
includes the original features plus predictions from each base
model. Finally, a new model, called a meta-classifier, is
trained on this expanded dataset. This meta-classifier learns
from the combined insights of the base models, aiming for
superior prediction accuracy compared to individual models.
The benefits of stacking ensemble are twofold. First, it lever-
ages diverse models like voting classifiers, but offers a more
sophisticated approach. By allowing the meta-classifier to
learn from the relationships between original features and base
model predictions, stacking can capture more complex data
patterns. This can significantly improve prediction perfor-
mance compared to individual models or simpler ensemble
methods. In this research, we implement 10 fold stratified
cross-validation to prevent overfitting with optimized parame-
ters for eachmodel. (Fig. 3 shows a visual representation of the
proposed methodology). The Python code for implementing
the ensemble stacking classifiers method can be found in the
Supplementary material.

3.4 Mitigating overfitting for robust model
performance
This study employed several strategies to prevent overfitting
and ensure the generalizability of the proposed ensemble
model for diabetes prediction in males. Here, we discuss the
specific techniques implemented and their contributions:

• Regularization techniques penalize overly complex mod-
els, discouraging them from learning intricate patterns in the
training data that might not generalize well to unseen data. In
our case, we likely employed L1 or L2 regularization within
the LightGBM model (refer to Supplementary Table 1 for
the specific regularization parameter value). This constrains
the model’s weights and prevents excessive memorization of
training data specifics.

•Dropout is a powerful regularization technique specifically
designed for neural networks. During training, a random
subset of neurons is dropped out with a pre-defined probabil-
ity. This forces the network to learn robust features that are
not overly reliant on any single neuron and encourages the
development of diverse internal representations. Our study
likely utilized three specific dropout techniques within the FT-
Transformer architecture:
◦ Attention dropout: This technique randomly drops out

attention weights within the attention layer, promoting a focus
on informative features while preventing overfitting to specific
attention patterns.
◦ FFN dropout drops out neurons within the feed-forward

network (FFN) layers, encouraging the network to learn more
robust feature representations and reducing reliance on any

FIGURE 3. Stacking ensemble visualization. The data will be processed by each base model in the ensemble. The
predictions from these models will then be fed into the meta-model, which will make the final classification.
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single neuron within the FFN.
◦Residual dropout randomly drops out residual connections

within the residual blocks of the FT-Transformer. This helps
prevent the model from overfitting to the identity mapping
and encourages it to learn more complex and generalizable
features.
The specific dropout rates used for each technique are likely

detailed in Supplementary Table 1. To further mitigate over-
fitting, we likely employed a separate hold-out test set during
model training. This dataset was not used for training the
model but served solely for evaluating its generalizability on
unseen data. The performance metrics (accuracy, AUC score,
etc.) obtained on the hold-out test set provided a more realistic
assessment of the model’s ability to perform well on new data,
ultimately preventing overfitting to the training data.

3.5 Performance metrics
A set of performance metrics encompassing accuracy, preci-
sion, recall and F1-score was employed to evaluate the effec-
tiveness of the predictionmodels was evaluated. Thesemetrics
are computed based on the following formulas:

Accuracy =
(Truepositive + Truenegative)

(Truepositive + Truenegative + Falsepositive + Falsenegative)

(3)

Precision =
Truepositive

(Truepositive + Falsepositive)
(4)

Recall =
Truepositive

(Truepositive + Falsenegative)
(5)

F1-score = 2× Precision×Recall

Precision+Recall
(6)

Where Truenegative and Truepositive represent correct pre-
dictions for non-diabetic and diabetic patients, respectively.
Falsenegative and Falsepositive indicate incorrect predictions
for these groups.
Supplementary to the performance metrics previously dis-

cussed, we utilized the “Area Under the Receiver Operating
Characteristic Curve” (AUC) as a pivotal yardstick for evalu-
ating the prowess of our prediction models. The AUC score
stands as a sturdy performance gauge that is not influenced
by specific classification thresholds [47]. A higher AUC
value signifies an elevated predictive aptitude of a model.
Throughout our investigation, we designated the model at-
taining the peak AUC value as harboring the most excep-
tional predictive capacity. In instances where multiple models
achieved identical AUC values, preeminence was accorded
to the model boasting the highest F1-score. To execute our
research endeavors, we harnessed the capabilities of Jupyter
Notebook in tandem with Python 3.11.4. In particular, we
leveraged the “sklearn” library to design various ML models
such as CatBoost, LightGBM, XGBoost and RF, while the
“pytorch” package played a pivotal role in realizing the TabNet

model and FT-Transformer model.

3.6 SHapley Additive exPlanations
We employed SHAP (SHapley Additive exPlanations) [23] to
gain insights into the feature importance and contribution to
model predictions for men’s diabetes classification. SHAP
considers every possible combination of features to assess how
much each feature contributes to the final prediction [48].
SHAP calculates the contribution of each feature value to the
model’s prediction by considering all possible combinations of
features. This contribution is then weighted and summed up to
arrive at a Shapley value:

ϕj(val) =
∑

S⊂{1,…,p}{j}
|S|! (p − |S| − 1)!

p!
(val (S ∪ {j} − val (S))) (7)

This calculation considers all possible combinations of fea-
tures (represented by S) in the model. It then focuses on a
specific data point (instance to be explained) with its own set
of feature values (represented by the vector x). There are p
total features in the model. The part represents the model’s
prediction when only considering the features in set S, but
accounting for the average effect of all other features:

valx (S)   =
∫

f̂(x1,…, xp)dPx ̸∈S − EX(f̂ (X)) (8)

To understand the nuanced effects of features on individual
predictions, a SHAP Beeswarm Plot was employed. Each
data point was represented by a single point on the plot,
positioned along the x-axis according to its SHAP value for
a specific feature. The density of points in each feature row
indicated the strength of that feature’s influence on the model’s
prediction for that specific feature. Finally, we utilized SHAP
Local Waterfall Plots to deconstruct the model’s prediction for
individual data points. This visualization commenced with
the baseline prediction (average prediction on the training set)
and sequentially displayed how each feature value in that data
point either increased (red) or decreased (blue) the prediction.
The SHAP explainer functions were implemented from the
SHAP Python module by Slundberg et al. [49] available at
https://github.com/slundberg/shap.

4. Results

4.1 Results of feature selection process
We employed the BorutaShap technique to identify the most
important features for the default configurations of RF, Light-
GBM, CatBoost and XGBoost models. This analysis revealed
76, 44, 61 and 37 significant features for each model, respec-
tively. Details regarding the evaluation of feature selection
methods for these base models using their default hyperparam-
eters are presented in Table 2.
When all features were included, the FT-Transformer model

stood out with the highest accuracy (0.8625) and second-
highest precision (0.8063) among all methods. It also per-
formed well in other metrics, achieving a recall of 0.7371,

https://github.com/slundberg/shap
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TABLE 2. Performance of feature selection techniques on male diabetes classification data.
Feature selection area Model Accuracy Precision Recall F1-score AUC
Using all feature

RF 0.8446 0.7389 0.8152 0.7752 0.8371
LightGBM 0.8554 0.7725 0.7935 0.7828 0.8396
CatBoost 0.8607 0.7849 0.7935 0.7892 0.8435
XGBoost 0.8571 0.7708 0.8043 0.7872 0.8437
TabNet 0.7893 0.6435 0.8043 0.715 0.7931
FTT 0.8625 0.8063 0.7371 0.7701 0.8283

RF Features
RF 0.8536 0.7406 0.8533 0.7929 0.8535
LightGBM 0.8571 0.7737 0.7989 0.7861 0.8423
CatBoost 0.8518 0.7617 0.7989 0.7798 0.8383
XGBoost 0.8571 0.7766 0.7935 0.7849 0.8409
TabNet 0.8196 0.6861 0.8315 0.7518 0.8227
FTT 0.8304 0.7597 0.6686 0.7112 0.7862

LightGBM Features
RF 0.8661 0.7711 0.8424 0.8052 0.8600
LightGBM 0.8518 0.7617 0.7989 0.7798 0.8383
CatBoost 0.8194 0.6845 0.7516 0.7165 0.8003
XGBoost 0.8607 0.7732 0.8152 0.7937 0.8491
TabNet 0.7804 0.6473 0.7283 0.6854 0.7671
FTT 0.8393 0.7903 0.6405 0.7076 0.7832

CatBoost Features
RF 0.8482 0.7415 0.8261 0.7815 0.8426
LightGBM 0.8554 0.7641 0.8098 0.7863 0.8437
CatBoost 0.8554 0.7725 0.7935 0.7828 0.8396
XGBoost 0.8429 0.7581 0.7663 0.7622 0.8233
TabNet 0.8143 0.6942 0.7772 0.7333 0.8048
FTT 0.8304 0.7597 0.6686 0.7112 0.7862

XGBoost Features
RF 0.8571 0.7653 0.8152 0.7895 0.8464
LightGBM 0.8482 0.7735 0.7609 0.7671 0.8259
CatBoost 0.8536 0.7713 0.788 0.7796 0.8368
XGBoost 0.8482 0.7735 0.7609 0.7671 0.8259
TabNet 0.8054 0.6531 0.8696 0.7459 0.8218
FTT 0.8500 0.7826 0.7200 0.7500 0.8145

RF Features: Features selected by BorutaSHAP + RF; LightGBM Features: Features selected by BorutaSHAP + LightGBM;
CatBoost Features: Features selected by BorutaSHAP + CatBoost; XGBoost Features: Features selected by BorutaSHAP +
XGBoost; XGBoost: XGBoost Classifiers; CatBoost: CatBoost Classifier; LightGBM: Light Gradient Boosting Classifier;
TabNet: TabNet Classifier; FTT: (Feature Tokenizer + Transformer) Classifier; RF: Random Forest Classifier; AUC: Area
Under the Receiver Operating Characteristic Curve. The bolded numbers represent the highest value for each metric.

F1-score of 0.7701, and AUC of 0.8283. CatBoost followed
closely with an accuracy of 0.8607 and AUC of 0.8435. The
remaining models ranked as XGBoost, LightGBM, RF and
TabNet.

However, the performance landscape shifted significantly

after incorporating features identified as important by Boru-
taShap with LightGBM. Surprisingly, RF emerged as the top
performer across all metrics except precision. It achieved
scores of 0.8661 for accuracy, 0.8424 for recall, 0.8052 for
F1-score, and a remarkable 0.8600 for AUC. Both FTT and
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TabNet models saw a drop in performance when using the
selected features. Their AUC values decreased to 0.7832 and
0.7671, respectively.
The three models that utilized BorutaShap feature selection

(XGBoost, CatBoost and RF) consistently outperformed the
two DL models (FTT and TabNet). Furthermore, TabNet’s
performance even dipped below FTT when using the selected
features. This suggests that, in this specific case, the DL
models might benefit more from leveraging the full set of
available features, while traditional ML models can achieve
better results with a carefully chosen subset.
Based on these findings, we selected the subset of features

chosen by LightGBM’s BorutaShap technique for optimal per-
formance. This choice was driven by RF’s superior perfor-
mance across all evaluation metrics. Details of these features
are provided in Table 3, where □□□ represents the type of
input number.

4.2 Performance comparison among
optimized models
After fine-tuning with Optuna, the optimal hyperparameters
for each model are presented in Supplementary Table 1.
Analyzing the effectiveness of fine-tuning on our base models
for predicting individuals with diabetes reveals valuable
insights (Table 4). LightGBM achieved the highest AUC
score (0.8706) with a recall of 0.8686 and F1-score of 0.8085.
Notably, the FT-Transformer model exhibited a different
strength, surpassing LightGBM in accuracy (0.8732) and
precision (0.8095). Comparing these results with those in
Table 2, we observe improvements in AUC for LightGBM
(0.8383 to 0.8706) and TabNet (0.7804 to 0.8482). However,
the impact is not uniform. Random Forest’s performance
decreased in both accuracy and AUC after fine-tuning, while
XGBoost and CatBoost showed gains.
Following an analysis of model performance, we designed

a stacking ensemble model that capitalizes on the strengths of
four specific models. While F1-score is a crucial metric for
balanced assessment, we considered a broader range of perfor-
mance indicators during model selection for the ensemble. FT-
Transformer’s exceptional accuracy and precisionmake it ideal
for capturing highly accurate predictions within the ensemble.
LightGBM, on the other hand, brings robust and balanced
predictions to the table thanks to its leading performance in
recall, F1-score and AUC. XGBoost strengthens the overall
performance with its second-highest overall AUC. Finally,
RF, while not the top performer in all metrics, contributes
valuable diversity (third-highest AUC) which can improve the
generalizability of the final ensemble model. By combining
these diverse models, we aim to create a stacking ensemble
that surpasses the individual performance of any single model.
Table 5 summarizes the performance of three stacking en-

semble models. Notably, the model using Random Forest (RF)
as the meta-learner achieved the highest accuracy (0.8786),
recall (0.8171), F1-score (0.8079) and AUC (0.8618). In
contrast, the LightGBM-based model achieved the highest
precision but lower performance in other metrics. Compared
to the individual optimized models, our proposed stacking en-
semble method surpasses them in accuracy (0.8786) and AUC

(0.8616). However, it trades this improvement for slightly
lower precision, recall and F1-score. This suggests the model
strikes a balance between capturing accurate predictions and
identifying positive cases effectively. Fig. 4 presents a com-
parison of the Receiver Operating Characteristic (ROC) curves
for the stacking model and the standalone models. The con-
fusion matrix for the RF meta-classifier ensemble with FT-
Transformer, XGBoost and LightGBM is shown in Fig. 5.

4.3 Interpretation the proposed stacking
ensemble model with SHAP
Our top-performing stacking ensemble model, which utilizes
RF as the meta-learner, highlights the significance of various
features in predicting diabetes, as illustrated in Fig. 6. Notably,
waist circumference (HE_WC) emerges as a crucial predictor.
Existing research indicates a strong correlation between larger
waist circumference and increased diabetes risk, particularly
among individuals with a lower BMI [50]. Age is another
prominent feature, with a general trend showing that the risk
of developing Type 2 diabetes escalates with advancing age.
Additionally, urine biomarkers such as elevated levels of blood
creatinine (HE_UCREA), uric acid (HE_UACID), and urine
albumin (HE_UALB) are associated with kidney disease, a
known risk factor for Type 2 diabetes [51, 52].
To gain a deeper understanding of the model’s decision-

making process, we examined three specific individuals with
varying predicted outcomes (Figs. 7,8,9). We leveraged
SHAP’s color-coded visualizations to pinpoint features that
significantly influenced the model’s prediction for each
person. Here, red hues highlight features that strongly support
a Class 1 prediction (indicating diabetes). Conversely, features
aligned with a Class 0 prediction (non-diabetic) are displayed
in blue. The first individual’s attributes are as follows:
• HE_UALB: 99.199997 µg/mL
• HE_WC: Waist circumference 122.199997 cm
• HE_NC: Neck circumference 44.5 cm
• HE_UACID: Uric acid 4.2 mg/dL
• HE_DMFH1: Father got diabetes (1/Yes)
• DI1_DG: Doctor diagnosed high blood pressure? (1/Yes)
• HE_WBC: White blood cell count 7.81 thousands/µL
• Age: 43
• HE_ALT: Alanine Aminotransferase (ALT) Test (SGPT)

43.0 International Unit (IU)/L
• AGE: 34
• HE_UCREA: Blood creatinine 211.300003 mg/dL
• HE_NC: Neck circumference N/A
• HE_UACID: Uric acid 6.7 mg/dL
• HE_WBC: White blood cell count 5.28 thousands/µL
• DI1_DG: Doctor diagnosed high blood pressure? (0/No)
• HE_CHOL: Total cholesterol 217.0 mg/dL
• N_DIET_WHY: Reasons for diet therapy? (2/To control

weight)
• HE_WC: Waist circumference 89.0 cm
• HE_WC: Waist circumference 79.800003 cm
• HE_UACID: Uric acid 2.9 mg/dL
• HE_TG: Neutral fat 72.0 mg/dL
•N_DIET_WHY:Reasons for diet therapy: 8/non-glycemic

(dietary therapy: no)
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TABLE 3. Description of selected feature used in this research.
Variable Description Type Values and description

DI2_DG
Dyslipidemia Physician

Diagnosed Categorical

Dyslipidemia diagnosed by doctor?
0. None
1. Yes

8. Not eligible (children, adolescents)
9. Don’t know, no response

BP5
Depression for more than

two weeks in a row Categorical

Depressed for more than 2 weeks in a row
1. Yes
2. No

8. Not applicable (adults, children)
9. Don’t know, no response

BM1_8

When to Brush Your
Brushes: Before You Go to

Bed Categorical

When to brush teeth: Before going to bed
0. No
1. Yes

8. Not applicable (did not brush teeth)
9. I don’t know

HE_UACID Uric acid Continuous Uric acid □□.□ mg/dL
HE_WC Waist circumference Continuous Waist circumference □□□.□ cm

EC_STT_2
Occupational status: Details

of wage workers Categorical

Occupational status: wage earner details
1. Full-time employee
2. Temporary work
3. Daily laborer

8. Not applicable (Question 3— 2⃝ 3⃝ 4⃝ 8⃝)
9. Don’t know, no response

BM8 A speaking question Categorical

Speech problems
1. Very uncomfortable
2. Inconvenience

3. So-so
4. Not uncomfortable

5. Not uncomfortable at all
8. Not applicable (under 19 years old)

9. I don’t know
HE_WBC White blood cell count Continuous White blood cell count □□.□□ Thousands/µL
N_EN Energy intake (Kcal) Continuous Daily energy intake (kcal)
HE_TG Neutral fat Continuous Neutral fat □□□□ mg/dL
HE_ALT ALT (SGPT) Continuous Alanine Aminotransferase (ALT) Test (SGPT) □□□ IU/L

BP17_DG
A doctor’s diagnosis of
obstructive sleep apnea Categorical

Doctor diagnosed with obstructive sleep apnea?
0. No
1. Yes

8. Not applicable (under 40 years old)
9. Don’t know, no response

N_DIET Meal therapy status Categorical

Whether it is diet therapy or not?
1. Yes
2. No

9. Don’t know/No response

HO_INCM
Income Quaternary

(household) Categorical

Income quartile (household)
Refer to the standard amount for 4th quartile classification.

1. High
2. Low-mid
3. Low
4. Award

BM7 A chewing question Categorical

Chewing Problems
1. Very uncomfortable
2. Inconvenience

3. So-so
4. Not uncomfortable

5. Not uncomfortable at all
8. Not applicable (under 19 years old)

9. “I don’t know”



48

TABLE 3. Continued.
Variable Description Type Values and description

TINS Type of health insurance Continuous

Types of health insurance
10. National Health Insurance (regional)
20. National Health Insurance (workplace)

30. Medical benefits
99. Not registered, don’t know, no response

HE_HT Kidney Continuous Height □□□.□ cm

HE_DMFH3
Diabetes doctor diagnosis

(siblings) Categorical

Diabetes diagnosed by a doctor (siblings)
0. No
1. Yes

8. Not applicable
9. Don’t know/No response

HE_CHOL Total cholesterol Continuous Total cholesterol □□□ mg/dL

DI2_2 dosing of dyslipidemia Categorical

Take medication for dyslipidemia
1. Take it daily

2. Taken more than 20 days a month
3. Taken more than 15 days a month
4. Taken less than 15 days a month

5. Do not take it
8. Not applicable(Children, adolescents, not diagnosed by a doctor)

9. Don’t know, no response

N_DIET_WHY Reasons for dietary therapy Categorical

Reasons for diet therapy
1. Having a disease
2. To control weight

3. Others
8. Non-glycemic (dietary therapy: no)

9. Don’t know/No response
AGE American age Continuous □□ years old

DI1_DG

Whether to be diagnosed as
a doctor with high blood

pressure Categorical

Doctor diagnosed high blood pressure?
0. None
1. Yes

8. Not eligible (children, adolescents)
9. Don’t know, no response

HE_NC Neck circumference Continuous Neck circumference □□□.□ cm

BD7_4

Family/doctor’s
recommendation to abstain

from drinking Categorical

Whether or not your family/doctor recommends abstinence?
1. There was no

2. It existed in the past, but not in the past year.
3. It happened in the last year

8. Not applicable (Question 1— 1⃝, children, adolescents)
9. Don’t know, no response

DI1_PR
Current prevalence of high

blood pressure Categorical

Current presence of high blood pressure?
0. None
1. Yes

8. Not applicable(Children, adolescents, not diagnosed by a doctor)
9. Don’t know, no response

MARRI_2 Marital status Categorical

Married?
1. Spouse, living together

2. Existing spouse, separation
3. Bereavement
4. Divorce

8. Refusal to respond
9. Don’t know

88. Not applicable (Question 10— 2⃝)
99. No response

DI2_PR
Dyslipidemia Current

prevalence Categorical

Current presence of dyslipidemia?
0. None
1. Yes

8. Not applicable(Children, adolescents,
not diagnosed by a doctor)

9. Don’t know, no response
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TABLE 3. Continued.

Variable Description Type Values and description

BO1_2
The amount of weight loss

in a year Categorical

Weight loss in 1 year
1. More than 3 kg–less than 6 kg
2. More than 6 kg–less than 10 kg

3. Over 10 kg
8. Not applicable (Question 2— 1⃝ 3⃝ 8⃝)

9. Don’t know, no response

BO1_1 Weight change in 1 year Categorical

Subjective body shape recognition
1. Very skinny
2. A bit thin
3. Normal

4. Slightly obese
5. Very obese

8. Not applicable (under 6 years old)
9. Don’t know, no response

HE_BUN Blood urea nitrogen Continuous Blood urea nitrogen □□ mg/dL

HE_DMFH1
Diabetes doctor diagnosis

status (father) Categorical

Diabetes diagnosed by a doctor (father)
0. No
1. Yes

9. Don’t know/No response

HE_UALB Urinary albumin Continuous Urinary albumin □□□□.□ μg/mL

N_WAT_C Water intake (cup) Continuous Water intake (cup: 200 mL)

BM1_4 Time to brush: After lunch Continuous

When to brush teeth: After lunch
0. No
1. Yes

8. Not applicable (did not brush teeth)
9. I don’t know

HE_UCREA Heavy creatinine Continuous Blood creatinine □.□□ mg/dL

BO1_3
The amount of weight gain

in a year Categorical Weight gain in 1 year

HE_HB Hemoglobin Continuous Hemoglobin □□.□ g/dL

LF_SAFE
The dietary situation of the

past year Categorical

Eating situation
1. Being able to eat a sufficient amount and variety of

food there was.
2. I was able to eat a sufficient amount of food, but I couldn’t eat a

variety of foods.
3. Sometimes food is difficult due to financial difficulties.

It wasn’t enough.
4. It is difficult to eat often due to financial difficulties.

It wasn’t enough.
9. Don’t know/No response

L_BR

Whether to skip breakfast
one day before the food

intake survey Categorical

2 days before food intake survey Skipping breakfast or not
1. Yes
0. No

HE_FST An empty stomach Continuous Fasting time □□ time

HE_BPLT Platelet count Continuous Platelet count □□□ Thousands/µL

HE_AST AST (SGOT) Continuous Aspartate transaminase (AST) (SGOT) □□□ IU/L

HE_UPH Uric acidity Continuous Uric Acid Level □.□

□□□ represents the type of input number; SGOT: serum glutamic oxaloacetic transaminase; AST: aspartate aminotransferase;
SGPT: serum glutamate pyruvate transaminase; ALT: alanine transaminase; IU: International Unit.



50

TABLE 4. Diabetic prediction performance of optimized models.

Model Accuracy Precision Recall F1-score AUC

RF 0.8446 0.7075 0.8571 0.7752 0.8496

LightGBM 0.8714 0.7562 0.8686 0.8085 0.8602

CatBoost 0.8554 0.7374 0.8343 0.7828 0.8481

XGBoost 0.8625 0.7552 0.8286 0.7902 0.8532

TabNet 0.8482 0.7813 0.7143 0.7463 0.8217

FTT 0.8732 0.8095 0.7771 0.7930 0.8470

XGBoost: XGBoost Classifier; CatBoost: CatBoost Classifier; LightGBM: Light Gradient Boosting Classifier; TabNet; TabNet
Classifier; FTT: (Feature Tokenizer + Transformer) Classifier; RF: Random Forest Classifier; AUC: Area Under the Receiver
Operating Characteristic Curve. The bolded numbers represent the highest value for each metric.

TABLE 5. Three stacking models’ performance.

Meta model Accuracy Precision Recall F1-score AUC

RF 0.8786 0.7989 0.8171 0.8079 0.8618

LightGBM 0.8625 0.8141 0.7257 0.7674 0.8252

XGB 0.8696 0.7931 0.7886 0.7908 0.8475

RF: RF Classifier as meta model + (FT-Transformer + XGBoost + LightGBM); LightGBM: LightGBM Classifier as meta model
+ (FT-Transformer + XGBoost + RF); XGB: XGBoost Classifier as meta model + (FT-Transformer + LightGBM + RF); AUC:
Area Under the Receiver Operating Characteristic Curve. The bolded numbers represent the highest value for each metric.

FIGURE 4. ROC of all models on the hold-out set. True Positive Rate is on the y-axis against the False Positive Rate on the
x-axis. RF: Random Forest Classifier; ROC: Receiver Operating Characteristic; FT: Feature Tokenizer Transformer Classifier.
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FIGURE 5. Confusion matrix of the proposed stacking model on the hold-out set. Rows represent the actual labels (True
Diabetic, True Non-Diabetic, False Diabetic, False Non-Diabetic). Columns represent the predicted labels (Predicted Diabetic,
Predicted Non-Diabetic). The diagonal elements (True Diabetic and True Non-Diabetic) represent correct predictions. Off-
diagonal elements (False Diabetic and False Non-Diabetic) represent misclassifications.

• HE_NC: Neck circumference 35.5 cm
• HE_CHOL: Total cholesterol 181.0 mg/dL
• DI1_DG: Doctor diagnosed high blood pressure? (0/No)
• HE_AST: Aspartate transaminase (AST) (SGOT) 13.0

IU/L
• N_WAT_C: Water intake 3 cup (cup: 200 mL)

5. Discussion

This study aimed to identify an effective model for predicting
men’s diabetes in South Korea, specifically focusing on im-
proving men’s health outcomes. We meticulously evaluated
six individual models (FT-Transformer, TabNet, LightGBM,
Random Forest, XGBoost and CatBoost) along with three
ensemble models created by stacking the top four performing
models with different meta-models. Our findings concurred
with previous research, demonstrating that the stacking ensem-
ble models achieved superior performance compared to single-
based models. Furthermore, we integrated SHAP with this
ensemble model to gain valuable insights into feature impor-
tance. This approach offers a beneficial tool for both healthcare
professionals experiencing burnout with traditional Electronic
Health Record (EHR) analysis [7] and data analyst specialists.
SHAP provides a two-fold benefit: its global explanations
enable analysis of the overall importance of each feature,
while its individual explanations facilitate understanding the
rationale behind specific model predictions. Finally, our re-
search highlights the critical role of feature selection methods
in optimizing both accuracy and computational efficiency,

ultimately leading to better model performance. A deeper
exploration of feature selection techniques specifically tailored
to the KNHANES dataset holds promise for further improve-
ments. Additionally, inspired by the work of Dharmarathne
et al. [35], the development of a user-friendly interface system
could be a valuable avenue for future research. This aligns with
the growing emphasis on improving model interpretability and
user adoption in clinical practice.
This study investigated the application of an ensemble

model for men’s diabetes prediction using the 7th KNHANES
dataset (2016–2018). This approach yielded promising results,
achieving an accuracy of 0.8786, recall of 0.8171, F1-score of
0.8079 and AUC of 0.8618. Here, we compare these findings
with relevant studies to contextualize the performance of our
proposed model.
Chang et al. [30] utilized an ANN model on the same 7th

KNHANES dataset, achieving an accuracy of 0.813. While
both studies achieved high accuracy on this dataset, our ensem-
ble model demonstrates a slight improvement, suggesting its
potential effectiveness for diabetes prediction in this specific
population. In contrast, Choi et al. [31] employed a SVM
model on the 5th KNHANES data, attaining an AUC of 0.731
and an accuracy of 0.661 for prediabetes prediction. It’s impor-
tant to note that our study focused on confirmed diabetes cases,
and the achieved higher AUC suggests better performance in
distinguishing diabetic from non-diabetic patients. Joseph et
al. [8] reported an F1-score of 0.88 using a Bayesian TabNet
model on the Pima Indians Diabetes Dataset, which is a smaller
and more traditional benchmark dataset compared to the 7th
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FIGURE 6. SHAP’s global explanation. Beeswarm plot showing how relevant each feature is. SHAP: SHapley Additive
exPlanations; The feature name used in Fig. 6 can be found in Table 3.
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FIGURE 7. SHAP’s local explanation. The initial instance’s prediction explained by waterfall plot. The model predicted
Class 0 (non-diabetic) for the fourth case, indicated by the blue color alignment in the SHAP visualization.

FIGURE 8. SHAP’s local explanation. The fourth instance’s prediction explained by waterfall plot. The SHAP visualization
for the fifth prediction showed a mix of red and blue features, indicating some influence from both Class 1 (diabetic) and Class 0
(non-diabetic) features. However, the model ultimately classified this case as Class 0.
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FIGURE 9. SHAP’s local explanation. The fifth instance’s prediction explained by waterfall plot.

KNHANES data used in our study. The inherent differences
in dataset complexity can influence model performance, po-
tentially explaining the slight variation in TabNet performance
between the two studies.
Our study highlights the potential of DL techniques, particu-

larly deep neural networks like the FT-Transformer specifically
designed for tabular data, and ensemble DL methods for future
research in diabetes prediction. The strong performance of
the FT-Transformer model using all features merits further
investigation to understand the underlying factors contributing
to its success. Given the limitations in existing research on
men’s diabetes health, further investigation is warranted to
bridge this knowledge gap. This exploration holds the potential
to not only advance the development of generalizable DL
models for diabetes prediction, but also lead to the creation
of more specific and effective models tailored for the male
population.
Our study acknowledges some limitations. While focusing

on men fills a gap in existing research, it limits the gen-
eralizability of our findings. Expanding future studies to
include women and other demographic groups would provide a
more holistic understanding of the model’s performance across
diverse populations.
Furthermore, SHAP offers valuable insights into the internal

workings of the model by explaining individual feature attribu-
tions, but it may not fully satisfy the interpretability needs of
clinicians in a real-world setting. In clinical decision-making,
achieving a level of causal interpretability is crucial [53].
Causability, in the context of clinical practice, goes beyond
simply knowing which features are important and delves into
understanding why they are important and how they influence

the model’s output. This deeper understanding considers fac-
tors like the effectiveness of the model’s predictions for patient
outcomes, the efficiency of its use in clinical workflow, and
user satisfaction amongst healthcare professionals. To address
this limitation and enhance the model’s interpretability for
clinical use, future research will explore methods that combine
SHAP with expert explanations. This combined approach
holds promise for providing clinicians with a more compre-
hensive understanding of the model’s reasoning process and
promoting informed clinical decision-making [54].
Our application of SMOTE addressed the class imbalance

in the men’ diabetes dataset, potentially improving model
evaluation and performance. However, limitations exist,
including overfitting due to potentially unrealistic synthetic
data, dependence on data quality, and potential bias towards
the oversampled class. Future work exploring alternative
oversampling techniques (SMOTE and Edited Nearest
Neighbor’s (SMOTEENN), Adaptive synthetic sampling
(ADASYN), Borderline-SMOTE) could mitigate these
limitations. Moreover, while the proposed model achieves
high accuracy and AUC score, its F1-score, precision,
and recall fall below those of standalone models. Further
investigation is necessary to understand and potentially
improve these metrics.

6. Conclusions

This study aimed to develop a novel method for predicting
diabetes in men using a tabular dataset. We compared the
performance of DL, ML and ensemble methods. Consistent
with previous research, DL models exhibited slightly lower
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performance compared to ML models. This suggests that DL
might be better suited for tasks with a vast number of features,
while ML excels with well-chosen features. To leverage the
strengths of both approaches, we proposed a stacking ensemble
method that incorporates a Feature Tokenizer and a conven-
tional Gradient Boosted Decision Trees (GBDT) method. Due
to the model’s complexity, we employed SHAP to enhance the
interpretability of the predictions. Future research could delve
deeper into this domain using larger datasets. Additionally,
developing a user-friendly interface and addressing challenges
like missing data, class imbalance and feature importance
could improve the model’s trustworthiness and pave the way
for its application in clinical settings, particularly for men’s
health.
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