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Abstract
Men diagnosedwith type 2 diabetes at age 30 have a significantly reduced life expectancy
compared to their non-diabetic peers. Prediabetes, like diabetes, not only heightens
the risk of microvascular complications but also significantly increases the likelihood
of cardiovascular diseases and overall mortality. Early detection and intervention in
prediabetes can prevent these complications and delay or avoid the progression to
diabetes. However, prediabetes prediction remains a challenging area due to biased
accuracy and a lack of explainability in many existing machine learning methods. To
address these issues, this study aims to develop a novel hybrid model, HyperTab-
LIME,which combines a hypernetwork-based deep learning approach designed for small
tabular datasets (HyperTab) with the Local Interpretable Model-Agnostic Explanations
(LIME) framework to predict prediabetes in men aged over 30. We employed data
from 1527 male participants aged 30 and above from the 2022 Korean National Health
and Nutrition Examination Survey to train and test our model. The performance
of HyperTab-LIME was evaluated against several baseline models. The results
demonstrated that the HyperTab-LIME model excelled, achieving the Area Under the
Receiver Operating Characteristic Curve (AUC) scores of 0.8429 on the validation
set and 0.8300 on the hold-out set, thereby outperforming other baseline models
included in this study. To provide a dependable and interpretable diagnostic tool for
healthcare professionals, the optimized HyperTab model was integrated with the LIME
framework. This innovative approach ensures detailed and precise explanations of
predictive outcomes, greatly enhancing the medical community’s ability to understand
and trust the model’s decisions, thereby facilitating earlier interventions in the treatment
of prediabetes.

Keywords
Explainable AI; HyperTab; LIME; Prediabetes

1. Introduction

In recent years, there has been a notable escalation in the
incidence of diabetes worldwide [1–3]. According to the
International Diabetes Federation (IDF) Diabetes Atlas [1],
approximately 463 million adults aged between 20 and 79
years were living with diabetes in 2019, constituting 9.3% of
the global adult population. This number increased to 536.6
million (10.5% of the population) by 2021. The proportion
of adults diagnosed with diabetes has more than doubled from
4.7% in 1980 to 10.5% in recent years [2, 3]. Moreover,
it is estimated that over half of the 463 million individuals
diagnosed with diabetes are not aware of their condition [1].

The significant prevalence of diabetes and its complications
pose serious challenges to global health. For instance, diabetes
ranked as the eighth leading cause of dailymortality worldwide
in 2019 [4]. In Korea, it was the fifth leading cause of death
[5], with age-standardized mortality rates from diabetes higher

than the average among other Organization for Economic Co-
operation and Development (OECD) countries [6]. By 2018,
the prevalence of type 2 diabetes in South Korean adults aged
30 and older had escalated, affecting one in every seven adults
[7]. The condition is more prevalent in men, with a rate
of 15.9% compared to 11.8% in women, underscoring the
critical need for targeted interventions that address the specific
triggers of type 2 diabetes in the male population [7, 8]. In
2020, about 15.83 million Korean adults over 30 (44% of the
population), comprising 46.9% of men and 41.2% of women,
were identified with prediabetes [9]. In addition, data from
the USA population indicate that men diagnosed with type 2
diabetes at the ages of 30, 40 and 50 experience reduced life
expectancies by approximately 14, 9 and 5 years, respectively,
compared to those without the condition [10]. These statistics
underline the critical need for early detection and preventive
strategies against diabetes and prediabetes, particularly in men
starting from the age of 30.
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First identified in 1997 by the Expert Committee on Diag-
nosis and Classification of Diabetes Mellitus, prediabetes is
recognized as a crucial diagnostic category indicating a signif-
icantly elevated risk for the eventual development of diabetes
[11]. This condition serves as an intermediary phase between
normal glucose tolerance and diabetes mellitus, characterized
by either impaired fasting glucose or impaired glucose toler-
ance (IGT) [12]. Prediabetes is viewed as a condition with
a high propensity for progression to diabetes, with annual
conversion rates to diabetes ranging from 5% to 10% [13].
In 2021, it was estimated that 10.6% of the global popu-
lation, or approximately 541 million people, were affected
by IGT, with projections suggesting an increase to 730 mil-
lion (11.4%) by 2045 [14]. Prediabetes is diagnosed through
several parameters: a fasting plasma glucose (FPG) level of
100–125 mg/dL (5.6–6.9 mmol/L), impaired glucose tolerance
(IGT) indicated by a 2-hour oral glucose tolerance test (OGTT)
result of 140–199 mg/dL (7.8–11.0 mmol/L), or a glycated
hemoglobin (HbA1c) level ranging from 5.7%–6.4% (39–46
mmol/mol) [12]. Like diabetes, prediabetes increases the risk
of microvascular complications [13] and significantly elevates
the risk for cardiovascular disease and overall mortality—
nearly doubling it [15, 16]. Early detection and intervention in
prediabetes can not only prevent these complications but also
delay or avert the progression to diabetes, proving to be cost-
effective [17, 18].
Machine learning, a subfield of artificial intelligence (AI),

leverages historical data to enhance decision-making, employ-
ing statistical, probabilistic and optimization algorithms to
classify new data inputs [19]. Traditionally, robust statistical
methods such as multivariate regression and correlation anal-
ysis were employed to develop models by linearly integrating
relevant variables [20]. However, the digitization of medical
records has amassed extensive multidimensional data within
healthcare databases, presenting a prime opportunity for so-
phisticated machine learning techniques in pattern recognition
and prediction [21].
Machine learning diverges from conventional statistical

methods by utilizing a diverse array of parameters, including
Boolean logic, absolute constraints, conditional probabilities,
and innovative optimization techniques for classification,
mimicking human-like decision-making processes. Although
rooted in statistical and probabilistic principles, machine
learning has emerged as a superior tool for classification,
capable of deriving decisions or inferences from datasets
beyond the scope of traditional statistical methods [22]. While
machine learning has significantly enhanced the screening and
prediction of diabetes, there is a noticeable scarcity of studies
applying these techniques to the diagnosis of prediabetes [23].
This gap underscores the need for further research into the
application of machine learning in the early detection and
diagnosis of prediabetes.
To facilitate the broader integration of machine learning in

healthcare, enhancing the explainability of these models is cru-
cial. Implementing explainable AI (XAI) techniques improves
the transparency of machine learning operations [24]. XAI
enables healthcare professionals to predict and comprehend
the factors contributing to increased disease risk, a critical
factor for machine learning’s acceptance in medical settings.

One effective XAI technique is Local Interpretable Model-
Agnostic Explanations (LIME) [25], which is widely used to
elucidate predictions from opaque machine learning models.
The strength of LIME lies in its model-agnostic nature, al-
lowing its application across various machine learning mod-
els regardless of their underlying architecture. This method
focuses on identifying and highlighting the significance of
specific data features on an individual patient level, thereby
enhancing the interpretability of the model’s outcomes. This
feature-specific insight is pivotal for clinicians to trust and
effectively use machine learning predictions in their decision-
making processes [26].
Deep learning, a branch of machine learning, has achieved

notable success across various domains including reinforce-
ment learning [27], audio analysis [28], natural language pro-
cessing [29], and computer vision [30]. Despite these ad-
vancements, deep learning has not been as effective or popular
for analyzing tabular data, where it generally underperforms
compared to conventional tree-based models such as Random
Forests, Decision Trees and XGBoost in real-world applica-
tions [31, 32]. This is particularly true in scenarios involving
small tabular datasets, where traditional deep learning ap-
proaches often fall short [32]. Nonetheless, a recent innovation
in this area is the HyperTab [33] model, a hypernetwork-based
deep learning strategy designed specifically for small tabular
datasets. HyperTab combines the strengths of Random Forests
and neural networks to create an ensemble of neural networks.
Each network within the ensemble is tailored to handle a
specific lower-dimensional slice of the dataset. This novel
approach has shown superior performance over traditional
machine learning models on various small tabular datasets
[33–35], highlighting its potential to enhance data analysis in
contexts where deep learning has previously underachieved.
In this research, we introduce a novel hybrid model,

HyperTab-LIME, which integrates the HyperTab model with
the LIME framework to predict prediabetes in men aged
over 30. We utilized data from 1527 male participants over
the age of 30 from the 2022 Korean National Health and
Nutrition Examination Survey (KNHANES), and evaluated
the performance of our proposed model against several
baseline models. To establish a reliable and interpretable
diagnostic tool for prediabetes for healthcare professionals,
we combined the optimized HyperTab model with LIME.
This innovative hybrid approach provides detailed and precise
explanations of its predictive outcomes, enhancing the medical
community’s ability to understand and trust the decisions
made by the model.

2. Literature review

Research on the application of machine learning to prediabetes
is still relatively sparse compared to its use in diabetes predic-
tion. To date, only a handful of studies have explored machine
learning techniques for predicting prediabetes. One notable
study by Choi et al. [36] utilized data from the Korean Na-
tional Health and Nutrition Examination Survey (KNHANES),
specifically selecting individuals without diabetes. They used
data from 2010 (n = 4685) for training and internal validation
and data from 2011 (n = 4566) for external validation. They
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created two models, an artificial neural network (ANN) and a
support vector machine (SVM), to screen for prediabetes and
compared their efficacy with a previously developed logistic
regression-based screening score model. The SVM model
demonstrated superior performance with an AUC of 0.731 on
the external dataset, outperforming both the ANN model and
the logistic regression-based model.
Kushwaha et al. [37] focused on an Indian national dataset

covering children and adolescents aged 5–19 years to craft a
non-invasive screening model for prediabetes using machine
learning. The dataset included 26,567 participants, categorized
into normal (n = 23,777) and prediabetes (n = 2790) based
on HbA1c levels. The XGBoost model achieved the highest
cross-validation accuracy at 90.13%, significantly outperform-
ing other models like Random Forest (RF), Gradient Boosting
(GB), SVM, Decision Tree (DT) and Extra Trees (ET).
Silva et al. [38] analyzed data from the National Health

and Nutrition Examination Survey 2013–2014, involving 6346
participants. The data were divided into training (n = 3174) and
internal validation sets (n = 3172), with an external validation
set prepared from the 2011–2012 survey data (n = 3000). They
applied four machine learning algorithm (Logistic Regression,
ANN, RF and GB) across 46 exposure variables to develop
a prediabetes prediction model. The models were also tested
using different resampling methods to balance class distribu-
tion. The RF model, particularly when using minority class
oversampling, achieved the highest performance, demonstrat-
ing an AUC of 71.58% on internal validation data and 70.01%
on external validation data.
Recently, XAImethodologies have been extensively applied

in numerous studies focusing on machine learning applica-
tions for diabetes prediction tools. For example, Tasin et
al. [39] created an automated diabetes prediction system
using various machine learning classifiers, including XGBoost
paired with Adaptive Synthetic (ADASYN) sampling to ad-
dress data imbalances. This approach achieved a high level
of performance, recording an accuracy of 81% and an AUC
of 0.84. They further enhanced the system’s transparency by
integrating XAI tools such as LIME and Shapley Additive
Explanations (SHAP), which elucidate the model’s predictive
decisions.
Similarly, Kim et al. [40] employed XAI, specifically

LIME, to investigate key factors influencing comorbid con-
ditions associated with diabetes, including cancer, heart dis-
ease and mental health issues. Their findings highlighted the
critical roles of body mass index, socioeconomic status, life
satisfaction, and family support in managing diabetes and its
related health complications. In another study, Aelgani et
al. [41] introduced an ensemble explainable model designed
to predict diabetes. Their approach utilized a soft voting
classifier that combines five different machine learning algo-
rithm: Logistic Regression, K-Nearest Neighbors, DT, RF and
AdaBoost. This ensemble method achieved an accuracy of
81% on the Pima Indian diabetes dataset, surpassing traditional
predictive models. They also applied LIME to enhance the
interpretability of the ensemble model, aiding medical experts
in understanding the predictions more clearly.
Comparing with diabetes, the prediction of prediabetes re-

mains a challenging area due to biased accuracy and a lack

of explainability in many existing machine learning meth-
ods. Hence, our research aims to address these issues by
enhancing the interpretability and predictive performance of
machine learning models for prediabetes, proposing models
that not only predict effectively but also provide reliable and
comprehensible insights into disease risks.

3. Materials and methods

3.1 Data source and study workflow
This research leveraged data from the 2022 Korea National
Health and Nutrition Examination Survey (KNHANES) [42],
administered by the Korea Centers for Disease Control and
Prevention under the auspices of the KoreanMinistry of Health
and Welfare. KNHANES is a comprehensive national sur-
vey designed to collect a wide array of data spanning social,
economic, nutritional and health dimensions. This includes
information gathered through health interviews, behavior sur-
veys, clinical examinations, and nutritional assessments, cov-
ering aspects such as healthcare utilization, anthropometric
measurements, biochemical profiles, quality of life and health
behaviors. The overview of KNHANES dataset is described
in Table 1. The original 2022 KNHANES dataset contained
6265 samples. For the purposes of this study, we focused on
male participants, reducing the sample size to 2797. We further
refined the dataset by excluding males with missing values
in the target column “HE_DM_HbA1c”, resulting in 2177
samples. The analysis was limited to men aged 30 and above,
hence narrowing down the sample to 1909. After excluding
men under the age of 30 and those without diagnosed diabetes,
the final dataset comprised 1527 records of men aged 30 or
older with prediabetes or normal state. This subset was used to
develop a precise model for predicting prediabetes, as depicted
in Fig. 1.
Fig. 2 depicts the flow of the study. The dataset was

divided into training, validation and hold-out sets through a
random stratified split, adhering to a 70:15:15 distribution.
The training set, comprising 1069 participants, was employed
to train all models. The validation set, consisting of 229
participants, served to assess model performance and facilitate
the optimization of each model’s hyperparameters. The hold-
out set was used to evaluate the models’ performance on
previously unseen data, providing an unbiased assessment
of their effectiveness. Before training, a data preprocessing
step was implemented to ensure the data was suitable for
training models. This was followed by a feature selection
phase using the minimum Redundancy Maximum Relevance
(mRMR) technique to decrease the dataset’s dimensionality
and isolate the most predictive features for prediabetes. Sev-
eral classificationmodels were then trained and their prediction
performances evaluated in order to find the best performance
model. Finally, the LIME framework was integrated with
the best model to extract insights from its predictions and
improve interpretability. For the implementation of this study,
the computational environment was configured using Google
Colab. The experiments were conducted using Python 3.10.12
(Python Software Foundation, Wilmington, DE, USA), Py-
torch 2.3.0 (Meta AI, Astor Place, New York City, NY, USA)
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TABLE 1. Overview of KNHANES dataset.
Category Description

Survey Components

- Health Interview: Addresses socioeconomic factors, lifestyle choices like smoking and
alcohol use, physical activity, mental well-being, and chronic health conditions.

- Health Examination: Includes body measurements, blood pressure readings, clinical tests,
pulmonary function testing, dental health assessments, visual and auditory examinations.
- Nutrition Survey: Collects data on dietary habits, food intake, nutritional supplements,

and food security.

Survey Methods
- Health Interview: Conducted face-to-face or via self-administered questionnaires in mobile centers.

- Health Examination: Performed in mobile examination centers.
- Nutrition Survey: Face-to-face interviews at the participant’s residence.

Indicators Encompasses approximately 250 health indicators related to lifestyle behaviors, nutritional status, and
chronic disease conditions.

FIGURE 1. Population selection flowchart. KNHANES: Korean National Health and Nutrition Examination Survey;
HE_DM_HbA1c: the status of diabetes prevalence (comprising two categories: normal and prediabetes).
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FIGURE 2. Study workflow. mRMR: minimum Redundancy Maximum Relevance; LIME: Local Interpretable Model-
Agnostic Explanations.

and sklearn 1.2.2. Additional libraries required for specific
tasks or analyses can be installed as needed.

3.2 Data preprocessing
Initially, our dataset comprised 1527 records of men aged over
30, containing 623 variables. We eliminated columns with
more than 70% missing values and irrelevant columns such
as date, time, personal identifiers and address. Additionally,
we removed all variables associated with medically diagnosed
diabetes and treatment information. These exclusions reduced
the dataset to 297 variables (detailed in Supplementary Table
1) devoid of missing values.
Following this initial filtering, the refined dataset featured

212 categorical variables and 85 numerical variables. We
applied Label Encoding to the categorical variables and
normalized the numerical variables using a Standard Scaler
to standardize the data for model training. The target
variable, “HE_DM_HbA1c”, which indicates the status of
diabetes prevalence, comprised two categories: normal and
prediabetes. These were encoded using Label Encoding, with

“normal” assigned a value of 0 and “prediabetes” a value of
1. The distribution of these classes within the target feature
was nearly balanced at 769 for class 0 and 758 for class 1.
The processed dataset was subsequently divided into training,
validation, and hold-out sets, with the specific numbers of
samples in each detailed in Fig. 2.

3.3 Feature selection

After preprocessing, our dataset comprised 297 variables, ne-
cessitating the application of a feature selection technique to
minimize noise variables, prevent overfitting, and reduce the
time required to train models. Feature selection techniques
are commonly categorized into three types: filter, wrapper
and embedded methods [43]. For this study, we chose the
filter strategy due to its computational efficiency and broad
generalizability across various machine learning models [43].
Specifically, we employed the “Minimum Redundancy Maxi-
mum Relevance” (mRMR) [44] method. The mRMR method
has demonstrated robust generalization capabilities and has
been extensively validated across various healthcare datasets.
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For instance, Özyurt et al. [45] utilized the mRMR feature
selection method to enhance a fused Convolutional Neural
Network (CNN) model for analyzing white blood cell tests.
Similarly, Eroglu et al. [46] developed a hybrid CNN model
that employs mRMR for the classification of Alzheimer’s
disease. Kumar et al. [47] applied mRMR as a feature
selection filter in diagnosing heart disease using Electrocardio-
gram (ECG) data. Furthermore, the mRMR method has been
successfully implemented in several diabetes-related machine
learning models [48–50], underscoring its effectiveness in
enhancing model accuracy in diverse medical applications.
The rationale behind selecting the mRMR method is its

effectiveness in eliminating redundant features while retaining
those most relevant to the model. It is recognized that the m
best features are not the best m feature, due to the presence
of correlation and redundancy among key features. mRMR
addresses this by selecting features based on their relevance to
the target variable and their redundancy relative to previously
selected features. At each iteration, the relevance of a feature f
is determined by the F-statistic between the feature and the
target. The redundancy is calculated as the mean Pearson
correlation between the feature and all previously selected
features. Thus, a score is computed for each feature under
consideration at iteration i, as detailed in Eqn. 1 below:

scorei (f) =
F (f, target)

1
|S|

∑
s∈S |corr(f, s)|

(1)

Where i represents the iteration number, S is the subset of
features selected until i − 1, |S| is size of subset S, f is the
feature being evaluated, F is the F-statistic, and corr is the
Pearson correlation.
In our study, we employed the mRMR feature selection

method using the mrmr_selection package (accessible via
https://github.com/smazzanti/mrmr) to identify the optimal
number of features (k) that enhance prediction accuracy
for our target variable. Initially, we conducted training and
validation across all models with default hyperparameters,
using the complete set of 297 variables to find a baseline
model with the best performance. Following the selection of
the best base model, we implemented a loop to vary k from
10 to 100. During each iteration of the loop, we applied the
mRMR method to select the top k features for that iteration
and retrained the best base model using only these selected
features. We recorded the performance metrics (accuracy,
precision, recall and AUC) for each iteration. The optimal k
value was determined as the one where the selected k features
yielded the maximum AUC score compared to other k values.
The process for this selection is outlined in the code shown in
Fig. 3.

3.4 Classification models
3.4.1 Proposed model: HyperTab
HyperTab represents an innovative approach to constructing
an ensemble of neural networks, specifically designed for
handling small tabular datasets, as illustrated in Fig. 4. This
method integrates an ensemble strategy with a feature subset-

ting augmentationmechanism, which significantly expands the
training dataset and allows for the application of more complex
network architectures. This augmentation ensures that the
class labels remain unchanged, maintaining the integrity of the
dataset while facilitating dimensional reduction.
The architecture of HyperTab includes a primary hypernet-

work and a series of target networks. The hypernetwork is
responsible for generating the weights for each target network
based on a given augmentation identifier, which defines a
subset of features. This setup enables each target network
to process data represented only by these selected features,
effectively increasing the dataset’s variability by treating each
(augmentation, example) pair as a unique training instance.
Notably, the target networks’ parameters are not independently
optimized but are derived from the hypernetwork, reducing the
number of parameters that need to be trained directly. The
only parameters trained directly are those of the hypernetwork
itself, which streamlines the learning process and reduces
computational overhead.
The HyperTab model not only increases the effective num-

ber of training examples through augmentation but also allows
for the automated design of network architectures tailored
to specific feature subsets. Each target network processes
a lower-dimensional view of the data, enabling more effi-
cient learning from small datasets. HyperTab thus offers a
potent and adaptable tool for deep learning on challenging
small tabular data cases. The flexibility of this model is
further enhanced by its ability to customize various parame-
ters through its implementation package (can be accessed at
https://github.com/wwydmanski/hypertab). This customiza-
tion includes settings for the train-test split ratio, computational
device, number of test nodes, training epochs, and dimensions
of hidden layers, providing a comprehensive tool for tackling
classification tasks in tabular datasets.

3.4.2 Baseline models
In this research, we evaluated the performance of the Hy-
perTab model against several established machine learning
algorithms, such as AdaBoost [51], Gradient Boost [52], XG-
Boost [53], LightGBM [54], Random Forest [55], and Logistic
Regression [56], which have previously been utilized in the
development of prediabetes or diabetes prediction models [23,
36–41]. Here is a concise overview of each model:
• AdaBoost: This model employs an ensemble strategy

known as “adaptive boosting” to convert a series of weak clas-
sifiers into a strong classifier. It sequentially adds classifiers
to the ensemble, correcting the predictions of prior classifiers
until the training set is accurately classified or a predetermined
limit of classifiers is reached. This method was incorporated
into an explainable ensemble model for diabetes prediction in
research by Aelgani et al. [41].

• Gradient Boost: Known for its speed and efficiency,
Gradient Boost reduces bias errors through a method where
decision trees are incrementally added to minimize the model’s
prediction errors. It operates under a greedy algorithm that
can potentially lead to overfitting if not properly managed.
Depending on its application as a regressor or classifier, it
uses Mean Square Error (MSE) or Log loss as its cost function
respectively. Kushwaha et al. [37] and Silva et al. [38] have

https://github.com/smazzanti/mrmr
https://github.com/wwydmanski/hypertab
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FIGURE 3. Pseudo code for finding optimal k value. mRMR: minimum Redundancy Maximum Relevance; AUC: Area
Under the Receiver Operating Characteristic Curve.

FIGURE 4. Architecture of HyperTab model. This configuration involves a hypernetwork that utilizes a binary mask to
select a subset of features, thus defining the augmentation. The hypernetwork then produces the weights for the target network,
which processes the data in a reduced dimensionality as specified by this mask. The output of the HyperTab model is derived
from the collective responses of multiple target networks, each corresponding to different individual augmentations.
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used this model to benchmark prediabetes prediction efforts.
• XGBoost: This is an advanced implementation of gra-

dient boosting that has gained popularity for its predictive
accuracy in various competitions. XGBoost is a scalable and
efficient framework that emphasizes performance and speed
in tree boosting, enhancing the predictive power by combining
multiple weak classifiers into a robust model. Kushwaha et al.
[37] highlighted its efficacy in predicting prediabetes among
children and adolescents.

•LightGBM:As a gradient boosting framework, LightGBM
builds the model by adding weak learners using a gradient
descent algorithm. It stands out for its efficiency in memory
usage and speed, primarily due to its innovative Gradient-
based One-Side Sampling (GOSS) technique. Yuk et al. [57]
applied this model effectively in prediabetes prediction.

• Random Forest: Frequently used in various predictive
tasks, Random Forest constructs multiple decision trees during
training and outputs the mode of the classes (classification)
or mean prediction (regression) of the individual trees. It
randomly selects subsets of features and samples to build each
tree, thereby increasing diversity in the model and reducing
overfitting. This model was noted for its superior performance
in prediabetes prediction in research by Silva et al. [38].
• Logistic Regression: This is a statistical method for binary

classification that provides probabilities for the outcomes. It
estimates the probability of a binary response based on one
or more predictor variables, making it suitable for situations
where the response variable is categorical. This model was
applied as part of an explainable ensemble model for diabetes
prediction by Aelgani et al. [41] and it served as a comparative
baseline in studies by Choi et al. [36] and Silva et al. [38].
In addition to evaluating various traditional machine learn-

ing models, our study also examines the effectiveness of the
HyperTab model against another deep learning model tailored
for small tabular datasets, known as TabPFN [58]. TabPFN
represents a significant innovation as a deep learning trans-
former specifically optimized for rapid supervised classifica-
tion tasks on small datasets. Remarkably, it operates effi-
ciently without the need for extensive hyperparameter tuning
and compares favorably with leading classification techniques.
TabPFN employs in-context learning (ICL), where it processes
and makes predictions based on sequences of labeled example
pairs (x, f(x)) provided directly in the input. This method
allows TabPFN to generate predictions without the need for
additional parameter adjustments post-training. The model
architecture of TabPFN is designed to handle both training and
test data in a set-valued input format, enabling it to output
predictions for the entire test set in a single forward pass.
Functioning as a Prior-Data Fitted Network (PFN), TabPFN
is pretrained once and uses this training to perform what ap-
proximates Bayesian inference on synthetic datasets that are
generated based on a predefined prior. This prior is influenced
by principles of causal reasoning, favoring structural causal
models that are not only comprehensive but also inherently
simpler in their construction. This approach allows TabPFN to
integrate and leverage causal relationships effectively within
its predictive framework.

3.5 Performance metrics
In this research, the efficacy of various prediction models was
evaluated using several key performance indicators, including
the Area Under the Receiver Operating Characteristic Curve
(AUC), accuracy, recall and precision. The calculations for
these metrics are based on the following equations:

AUC =

∫ 0

1

TPR (ti) d(FPR (ti)) (2)

accuracy =
Truepositive + Truenegative

Total predictions
(3)

recall =
Truepositive

Truepositive + Falsenegative
(4)

precision =
Truepositive

Truepositive + Falsepositive
(5)

Here, FPR(ti) and TPR(ti) represent the false positive rate
and true positive rate corresponding to threshold ti. In addition,
Truenegative and Truepositive refer to accurate predictions for
the “normal” (class 0) and “prediabetes” (class 1) categories,
respectively. Conversely, Flasenegative and Flasepositive rep-
resent incorrect predictions for class 0 and class 1, respectively.
In our analysis, we assumed that the model demonstrating

the highest AUC value possessed the superior predictive ca-
pability. In cases where the AUC values were identical, the
model with the highest accuracy was considered optimal.

3.6 Optimizing hyperparameters
In this study, with the exception of the TabPFN model, all
models underwent hyperparameter optimization using the Op-
tuna framework [59]. Optuna is a versatile and open-source
hyperparameter optimization framework in Python that facili-
tates automated and parallel optimization processes, enhancing
both the flexibility and interpretability of the tuning efforts
[59]. For the TabPFN model, there is a single parameter
named “N_ensemble_configurations” that was systematically
trained across a range from 2 to 200 to determine the optimal
setting that maximizes the AUC score. The specific ranges
for hyperparameter tuning of the HyperTab model and other
baseline models are detailed in Table 2.

3.7 LIME: local interpretable
model-agnostic explanations
LIME, developed by Ribeiro et al. [25], employs a surrogate
model to deliver localized explanations of model predictions.
It elucidates how a model’s predictions vary in response to
modifications in the input data, creating a new dataset of
perturbed instances alongside their corresponding outputs from
the black boxmodel. This altered dataset facilitates the training
of an interpretable model, where the weighting is adjusted
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TABLE 2. Hyperparameter tuning ranges.
Model Hyperparameters Range or Values
HyperTab

Subsample (subsample) 0.3 to 0.8 (step = 0.1)
Hidden Dimensions (hidden_dims) 2 to 20

Test Nodes (test_nodes) 2 to 64
Learning Rate (lr) (3 × 10−5, 3 × 10−4, 3 × 10−3, 3 × 10−2, 3 × 10−1)
Epochs (epochs) (20, 30, 50, 70, 100)

LightGBM
Number of Leaves (num_leaves) 20 to 120

Number of boosting rounds (n_estimators) 50 to 500
Learning Rate (learning_rate) 0.001 to 0.2 (log scale)
Max Depth (max_depth) 3 to 10

Gradient Boost
Number of boosting rounds (n_estimators) 50 to 500

Learning Rate (learning_rate) 0.001 to 0.2 (log scale)
Max Depth (max_depth) 3 to 10

XGBoost
Number of Leaves (max_leaves) 20 to 120

Number of boosting rounds (n_estimators) 50 to 500
Learning Rate (learning_rate) 0.001 to 0.1 (log scale)
Max Depth (max_depth) 3 to 12

AdaBoost
Number of Estimators (n_estimators) 50 to 500

Learning Rate (learning_rate) 0.001 to 1 (log scale)
Random Forest

Number of Trees (n_estimators) 100 to 1000
Max Features (max_features) (“auto”, “sqrt”, “log2”)
Max Depth (max_depth) 5 to 30

Logistic Regression Inverse of Regularization Strength (c) 0.01 to 100 (log scale)
TabPFN N_ensemble_configurations 2 to 200
HyperTab: hypernetwork-based deep learning approach designed for small tabular datasets; TabPFN: HyperTab model against
another deep learning model tailored for small tabular datasets.

according to how closely related the instances are to the focal
instance. The constraints of these local surrogate models,
which aim to maintain simplicity while maximizing explana-
tory power, can be mathematically expressed as shown in Eqn.
6:

Exp (x) = argminm∈ML (f,m, πx) + Ω(m) (6)

In this formulation, Exp(x) denotes the explanatory function
for a particular instance x, striving to minimize the loss L,
which represents the mean squared error. The objective is to
align the surrogate explanation model m as closely as possible
with the predictions of the original model f, while keeping the
complexity ofm, denoted asΩ(m), to a minimum. The term πx

quantifies the proximity of the data points in the vicinity of in-

stance x, indicating the breadth of the neighborhood considered
for the explanation. In this study, we chose two particular cases
to illustrate the functionality of the LIMEmodel in conjunction
with our most effective model for predicting prediabetes in
men aged 30 and older. We employed the LIME package,
available at https://github.com/marcotcr/lime, to provide inter-
pretative insights into the model’s predictive decisions.

4. Results

4.1 Feature selection results
Initially, we conducted training and validating all models using
their default hyperparameters across the entire dataset of 297
variables to establish a performance benchmark. As outlined in
Table 3, the evaluation of all models prior to feature selection
indicated that the Gradient Boost model achieved the highest

https://github.com/marcotcr/lime
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TABLE 3. Performance of models with default settings before feature selection.
Model AUC Accuracy Recall Precision
Gradient Boost 0.8223 0.7249 0.6491 0.7629
AdaBoost 0.8070 0.7424 0.7105 0.7570
Random Forest 0.7908 0.6943 0.6754 0.7000
XGBoost 0.7886 0.7118 0.6316 0.7500
LightGBM 0.7871 0.7424 0.6316 0.8090
Logistic Regression 0.7568 0.6900 0.7105 0.6807
HyperTab 0.7566 0.6507 0.6491 0.6491
TabPFN 0.6269 0.5939 0.6316 0.5854
AUC: Area Under the Receiver Operating Characteristic Curve; HyperTab: hypernetwork-based deep learning approach
designed for small tabular datasets; TabPFN: HyperTab model against another deep learning model tailored for small tabular
datasets.

AUC score of 0.8223 with default hyperparameters. Conse-
quently, this model was selected as the foundational model for
further exploration of the optimal number of features (k) using
the mRMR feature selection method.
Fig. 5 illustrates the performance of this base model across

different values of k, ranging from 10 to 100. In this figure,
the AUC scores for the base model are depicted in blue. The
analysis revealed that the optimal number of features, k, is
38. These 38 features, which identified through the mRMR
method, significantly enhanced model performance as shown
in Table 4. Descriptions of these features are detailed in
Table 5.
Analyzing the results from Table 4, which details the perfor-

mance of various predictive models post feature selection, we
observed a notable improvement inmodel performancemetrics
across several models when compared to their performance in
Table 3. TabPFN exhibits the most significant improvement.
Its AUC improved dramatically from 0.6269 to 0.8344, show-
casing a major enhancement in the model’s predictive capabil-
ities and overall accuracy, which also increased substantially.
HyperTab also shows remarkable improvement, with its AUC
jumping from 0.7566 to 0.8293. This suggests that the model
responds well to a more focused set of features, enhancing both
its accuracy and its ability to correctly classify positive cases.
The Gradient Boost model maintained its strong performance,
slightly enhancing its AUC and showing a notable increase
in accuracy. This model remains one of the top performers,
particularly excelling in accuracy among the leading models.
The remaining models also showed improvements in their
AUC scores though not as dramatically as TabPFN or Hyper-
Tab. Upon examining the results from Table 4 in comparison
with the initial performances listed in Table 3, it becomes
evident that feature selection has significantly influenced the
performance of the models evaluated.

4.2 Evaluating optimized models
Excluding the TabPFN model, HyperTab and other conven-
tional machine learning models were subject to hyperparame-
ter optimization using the Optuna framework, with each model
undergoing 100 iterations to refine settings. The specific
hyperparameters fine-tuned during this process are catalogued

in Table 6. The performance outcomes post-optimization are
enumerated in Table 7. From these results, HyperTab emerged
as the standout model, recording the highest AUC of 0.8429,
which underscores its superior predictive effectiveness. Fur-
thermore, HyperTab showcased strong and balanced perfor-
mance in terms of accuracy, precision and recall, indicating
its efficacy across various metrics.
Following AUC performance of the HyperTab model, the

TabPFN model exhibited an AUC of 0.8344, which was not
improve but its accuracy was increased into 0.7555. The Ad-
aBoost model, with an accuracy equal to HyperTab at 0.7686
and an impressive AUC of 0.8340, was particularly notable
for its high precision of 0.8020. The remaining models also
displayed improvements in their AUC scores following the
hyperparameter adjustments. It was observed that the boosting
models, while achieving high precision, tend to have lower
recall values. In contrast, models like HyperTab, TabPFN and
Logistic Regression maintained a more balanced performance
between recall and precision, highlighting their capability to
provide consistent and reliable predictions across different
evaluation metrics.
Fig. 6 presents the receiver operating characteristic (ROC)

curve for all optimized models evaluated on a hold-out set. In
this assessment, the proposed HyperTab model also excelled
among all models, achieving an AUC of 0.8300. This per-
formance underscores the capability of the HyperTab model
to effectively predict outcomes on data it has not previously
encountered, suggesting its practical applicability in real-world
scenarios. The consistent performance of the optimizedHyper-
Tab model on both the validation and hold-out sets reaffirms
its robustness and reliability in predicting prediabetes, making
it a valuable tool for clinical and healthcare analytics.

4.3 HyperTab-LIME evaluation
To enhance the interpretability of predictions made by the Hy-
perTab model and to facilitate its use in a healthcare assistance
tool, the LIME framework was integrated with the optimized
HyperTab model. This integration was aimed at elucidating
how the hybrid HyperTab-LIMEmodel predicts prediabetes in
males over the age of 30. For detailed analysis, two specific
instances were chosen, as illustrated in Fig. 7.
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FIGURE 5. Performance of the default gradient boost model during feature selection process. mRMR: minimum
Redundancy Maximum Relevance; AUC: Area Under the Receiver Operating Characteristic Curve.

TABLE 4. Performance of models with default settings after feature selection.
Model AUC Accuracy Recall Precision
TabPFN 0.8344 0.7424 0.7281 0.7477
HyperTab 0.8293 0.7205 0.7368 0.7119
Gradient Boost 0.8286 0.7522 0.7105 0.7714
LightGBM 0.8221 0.7478 0.6842 0.7800
AdaBoost 0.8075 0.7435 0.7018 0.7619
Random Forest 0.8149 0.7336 0.6579 0.7732
XGBoost 0.8062 0.7293 0.6667 0.7600
Logistic Regression 0.7795 0.7087 0.7281 0.6975
AUC: Area Under the Receiver Operating Characteristic Curve; HyperTab: hypernetwork-based deep learning approach
designed for small tabular datasets; TabPFN: HyperTab model against another deep learning model tailored for small tabular
datasets.

Fig. 7A presents a case study of a 70-year-oldmale predicted
to have prediabetes, with the model assigning an 84% proba-
bility to this outcome. The visualization highlights influential
features in orange, emphasizing their role in this particular
prediabetes prediction. Among the total of 38 variables, the
following 10 features were identified as having the most sig-
nificant impact on the prediction:
• age = 70. Age is 70.
• DI1_ag = 888. Hypertension diagnosis period is not

physically diagnosed.
• DI1_2 = 5. Taking Blood Pressure Regulators: Not

physically diagnosed.
• HE_sbp3 = 170. Third systolic blood pressure: 170

mmHg.
• N_EN = 1410.29. Daily energy intake: 1410.29 Kcal.

• BM13_5 = 2. Reasons for tooth damage: Other—Not
applicable (no experience of tooth damage).

• incm5 = 4. Income quintile (individual): High.
• HE_nc = 40.20. Neck circumference: 40.20 cm.
• HE_alt = 21. Aspartate transaminase (ALT): 21 IU/L.
• BM14_1 = 1. Reasons for not receiving dental treatment:

Because the symptoms are mild (I think it will get better over
time).
Fig. 7B illustrates a case study involving a 34-year-old

male predicted by the model to be in a normal health state,
with an 82% probability of accuracy. This section of the
visualization uses shades of blue to emphasize the features that
significantly influence this prediction of normalcy, aiding in
the interpretive process of the model’s output. Out of the total
38 variables considered by themodel, the following 10 features



63

TABLE 5. Selected features and their description.

Variable Description Type Values and description

age Age Continuous 1–79: 1–79 years old
80. “80 years of age or older”

incm5 Income quintile (individual) Categorical

0. Low
1. Low-mid
2. Middle

3. Middle-high
4. High

ainc_1 Gross household income Continuous

~ ×10,000 KRW
200. Less than 2 million won per year
More than 200 to less than 18,000
(continuous income amount)

18,000. More than 180 million won per year
In the case of question 6-1-2

17. less than 170,000 won per month
More than 17 to less than 1500
(continuous income amount)

1500. More than 15 million won per month
9,999,999. No response

DI1_ag Hypertension Diagnosis Period Continuous

~ years old
0–79: 0–79 years old

80: 80 years of age or older
888: Not physically diagnosed

999: No response

DI1_pt Treatment for high blood pressure Categorical

0. None
1. Yes

2. Not physically diagnosed
3. No response

DI1_2 Taking Blood Pressure Regulators Categorical

0. Taking daily
1. Taking more than 20 days a month
2. Taking more than 15 days a month
3. Take less than 15 days a month

4. Don’t take it
5. Not physically diagnosed

6. No response

DI2_pt Treatment of dyslipidemia Categorical

0. None
1. Yes

2. Not physically diagnosed
3. No response

DI2_2 Dosing of dyslipidemia Categorical

0. Taking daily
1. Taking more than 20 days a month
2. Taking more than 15 days a month
3. Take less than 15 days a month

4. Don’t take it
5. Not physically diagnosed
6. I don’t know. No response

BD1_11 The frequency of drinking for a
year

Categorical

0. I haven’t drank at all in the last year
1. less than once a month
2. About once a month
3. 2–4 times a month
4. 2–3 times a week

5. More than four times a week
6. Not applicable
7. No response



64

TABLE 5. Continued.
Variable Description Type Values and description

BD7_61 Damage caused by other peoples
drinking for a year: disturbance

Categorical

0. No, it’s not
1. Yes

2. Not applicable
3. No response

BS2_1 Smoking General Tobacco
(Combustion) Start Age

Continuous

~ years old
0–79: 0–79 years old

80: 80 years of age or older
888. Not applicable
999. No response

BE3_94 Physical activity time (minutes):
location movement

Categorical

~ minutes
0: 0
1: 10
2: 13
3: 15
4: 20
5: 22
6: 25
7: 26
8: 30
9: 34
10: 35
11: 38
12: 40
13: 41
14: 50

15: Not applicable
16: No response

BE3_88 Medium-intensity physical activity
time (minutes): leisure

Categorical

~ minutes
0: 0
1: 10
2: 13
3: 15
4: 20
5: 25
6: 30
7: 35
8: 40
9: 50

10: Not applicable
11: No response

HE_fst An empty stomach Continuous Hungry hours (h)
HE_sbp1 Primary systolic blood pressure Continuous Primary systolic blood pressure (mmHg)
HE_dbp1 Primary diastolic blood pressure Continuous Primary diastolic blood pressure (mmHg)
HE_sbp2 Secondary systolic blood pressure Continuous Secondary systolic blood pressure (mmHg)
HE_sbp3 Third systolic blood pressure Continuous Third systolic blood pressure (mmHg)
HE_ht Kidney Continuous Kidney (cm)
HE_wc waist circumference Continuous Waist circumference (cm)
HE_nc Neck circumference Continuous Neck circumference (cm)
HE_BMI Body mass index Continuous Body mass index (kg/m2)
HE_TG Neutral fat Continuous Neutral fat (mg/dL)
HE_ast AST Continuous (IU/L)
HE_alt ALT Continuous (IU/L)
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TABLE 5. Continued.
Variable Description Type Values and description
HE_crea Blood creatinine Continuous (mg/dL)
HE_WBC White blood cell count Continuous White blood cell count (Thous/µL)
HE_Bplt Platelet count Continuous Platelet count (Thous/µL)
HE_Ualb Urinary albumin Continuous Urinary albumin (µg/mL)
HE_Ukal Potassium Continuous Urinary potassium (mmol/L)

BM13_5 Reasons for tooth damage: Other Categorical

0. No
1. Yes

2. Not applicable
(no experience of tooth damage)

3. Don’t know

BM14_1 Reasons for Dental Treatment Categorical

0. Because I don’t have time (I can’t leave
work because it doesn’t open when I want,
I don’t have anyone to watch my kids, etc.)

1. Because the symptoms are mild
(I think it will get better over time)

2. Economic reasons (because medical
expenses are burdensome)

3. Transportation is inconvenient
and the distance is long.

4. I don’t want to wait a long time at the hospital.
5. It is difficult to make a reservation

at a hospital or clinic.
6. Medical treatment (fear of getting tested or treated)

7. Others
8. Not applicable (no, no medical treatment required)

9. Don’t know
N_EN Energy intake (Kcal) Continuous Daily energy intake (Kcal)
N_SFA Saturated fatty acid intake (g) Continuous Daily saturated fatty acid intake (g)
N_N3 N-3 Fatty Acid Intake (g) Continuous Daily n-3 fatty acid intake (g)
N_CHO Carbohydrate intake (g) Continuous Daily carbohydrate intake (g)
N_VA_RAE Vitamin A (retinol active

equivalent) intake (µgRAE)
Continuous Vitamin A (retinol active equivalent) intake (µg RAE)

N_VITC Vitamin C intake (mg) Continuous Daily vitamin C intake (mg)
KRW: Korean Won; AST: Aspartate transaminase, ALT: Alanine aminotransferase.

were identified as having the most substantial impact on this
prediction:
• age = 34. Age is 34.
• DI1_ag = 888. Hypertension diagnosis period is not

physically diagnosed.
• DI1_2 = 5. Taking Blood Pressure Regulators: Not

physically diagnosed.
• HE_alt = 12. ALT (SGPT): 12 IU/L.
• N_CHO = 215.22. Daily carbohydrate intake: 215.22 (g).
• N_EN = 1515.87. Daily energy intake: 1515.87 Kcal.
• BE3_88 = 0. Medium-intensity physical activity time

(minutes): leisure—0 minute.
• HE_sbp3 = 170. Third systolic blood pressure: 170

mmHg.
• incm5 = 4. Income quintile (individual): High.
• BM13_5 = 0. Reasons for tooth damage: Other—No.
• HE_Ukal = 89. Urinary potassium: 89 mmol/L.

Upon employing the LIME framework to interpret the pre-
dictions for prediabetes prevalence across all hold-out data,
a detailed assessment of the factors influencing prediabetes
predictions was conducted. Notably, the variable “age” had
the most substantial impact, accounting for 15.19% of the
prediction’s weight. This was followed by the “DI1_ag”
(Hypertension Diagnosis Period), which contributed 11.53%
to the model’s predictions. Other significant factors included
“DI1_2” (Taking Blood Pressure Regulators), “HE_alt” (ALT
(SGPT)), and “HE_WBC” (White Blood Cell Count), which
were responsible for 9.82%, 6.53% and 5.24% of the model’s
weight, respectively. Collectively, the top five variables ac-
counted for over 48% of the predictive weight. The top 10
influential variables for prediabetes prediction are compre-
hensively listed and detailed in Fig. 8. The remaining top
variables include “N_EN” (Daily energy intake), “N_CHO”
(Carbohydrate intake), “HE_sbp3” (Third systolic blood pres-
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TABLE 6. Optimized hyperparameters of each model.
Model Hyperparameters
HyperTab

Subsample (subsample) = 0.7
Hidden Dimensions (hidden_dims) = 20

Test Nodes (test_nodes) = 53
Learning Rate (lr) = 0.0003

Epochs (epochs) = 50
LightGBM

Number of Leaves (num_leaves) = 58
Number of boosting rounds (n_estimators) = 151

Learning Rate (learning_rate) = 0.02
Max Depth (max_depth) = −1

Gradient Boost
Number of boosting rounds (n_estimators) = 300

Learning Rate (learning_rate) = 0.05
Max Depth (max_depth) = 7

XGBoost
Number of Leaves (max_leaves)

Number of boosting rounds (n_estimators) = 300
Learning Rate (learning_rate) = 0.02

Max Depth (max_depth) = 10
AdaBoost

Number of Estimators (n_estimators) = 400
Learning Rate (learning_rate) = 0.1

Random Forest
Number of Trees (n_estimators) = 800
Max Features (max_features) = “sqrt”

Max Depth (max_depth) = 25
Logistic Regression Inverse of Regularization Strength (c) = 3.79
TabPFN N_ensemble_configurations = 104
HyperTab: hypernetwork-based deep learning approach designed for small tabular datasets; TabPFN: HyperTab model against
another deep learning model tailored for small tabular datasets.

TABLE 7. Performance of hyperparameters optimized models.
Model AUC Accuracy Recall Precision
HyperTab 0.8429 0.7686 0.7632 0.7565
TabPFN 0.8344 0.7555 0.7281 0.7685
AdaBoost 0.8340 0.7686 0.7105 0.8020
Gradient Boost 0.8338 0.7336 0.6579 0.7732
LightGBM 0.8336 0.7424 0.6579 0.7895
Logistic Regression 0.8288 0.7293 0.7368 0.7241
Random Forest 0.8235 0.7293 0.6579 0.7653
XGBoost 0.8106 0.7380 0.6754 0.7700
AUC: Area Under the Receiver Operating Characteristic Curve; HyperTab: hypernetwork-based deep learning approach
designed for small tabular datasets; TabPFN: HyperTab model against another deep learning model tailored for small tabular
datasets.
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FIGURE 6. ROC curve of optimized models evaluating on hold-out set. ROC: Receiver Operating Characteristic; AUC:
Area Under the Receiver Operating Characteristic Curve; HyperTab: hypernetwork-based deep learning approach designed for
small tabular datasets; TabPFN: HyperTab model against another deep learning model tailored for small tabular datasets.

FIGURE 7. HyperTab-LIME explanation examples. (A) Instance with prediabetes state prediction. (B) Instance with
normal state prediction.
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FIGURE 8. Top 10 most impact variables for prediabetes prediction. WBC: White Blood Cell Count; EN: Daily energy
intake: CHO: Carbohydrate intake; sbp3: Third systolic blood pressure; incm5: Income quintile (individual); Bplt: Platelet count.

sure), “incm5” (Income quintile (individual)), and “HE_Bplt”
(Platelet count).

5. Discussion

This research introduced a hybrid model, HyperTab-LIME,
which leverages the HyperTab model to predict prediabetes
occurrences in male over the age of 30, with subsequent ex-
planations for each prediction (whether normal or prediabetic)
provided by LIME, elucidating the decision-making process
of the otherwise opaque “black-box” model. The HyperTab
model was trained and optimized to achieve peak predictive
performance, evidenced by an AUC of 0.8429 on the valida-
tion set and 0.8300 on the hold-out set. To the best of our
knowledge, this is the inaugural application of HyperTab to the
prediction of prediabetes. Deep learning models typically ne-
cessitate a substantial dataset; nevertheless, HyperTab is a deep
learning model specifically tailored for small tabular datasets
[33]. Hence, this model proved to be appropriate for our
small dataset in this study, yielding exceptional performance
outcomes. Compared to previous research [36–38], our model
significantly improves the interpretability and predictive per-

formance of machine learning models for prediabetes, offering
not only effective predictions but also providing detailed and
reliable insights into potential prediabetes risks.
This research highlighted the pivotal role of feature selec-

tion strategies and hyperparameter optimization in enhancing
the performance of models, particularly those based on deep
learning architectures. It was observed that once the number of
selected features surpassed a specific threshold, the predictive
outcomes of all models stabilized. Further addition of features
did not augment model accuracy but instead imposed a signif-
icant computational load. Given the typically more complex
nature of deep learning architectures compared to traditional
machine learning architectures, such an increase in computa-
tional demands could lead to longer processing times, greater
resource consumption, or even diminished model performance
due to the inclusion of extraneous variables.
During this study, the mRMR filter selection method was

systematically applied to evaluate a range of 10 to 100 top
features selected by mRMR on the baseline Gradient Boosting
model. The analysis determined that the optimal number of
features was 38. Utilizing this optimized set of variables sig-
nificantly enhanced the performance of all models. Notably,
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for the two deep learning models examined, dramatic improve-
ments were observed: the TabPFN model’s AUC surged from
0.6269 to 0.8344, and the HyperTab model’s AUC increased
from 0.7566 to 0.8293. Further optimization of the Hyper-
Tab model’s hyperparameters raised its AUC performance to
0.8429. Overall, the feature selection and hyperparameter
optimization processes boosted the AUC performance of the
HyperTab model by nearly 9% and the TabPFN model by
nearly 21%. This demonstrated effectiveness of feature selec-
tion and hyperparameter optimization in the context of deep
learning architecture.
Currently, there is a notable lack of research focusing on

predictive models for prediabetes, particularly within the con-
text of the South Korean population. We identified only one
previous study that also employed the KNHANES dataset to
develop a machine learning model for prediabetes prediction.
Specifically, Choi et al. [36] used data from KNHANES 2010
(n = 4685) for training and validation, while data from KN-
HANES 2011 (n = 4566) served for external validation, serving
a similar purpose to our hold-out set. In that study, an SVM
model was developed to predict prediabetes, achieving AUCs
of 0.734 and 0.712 in the internal and external validation sets,
respectively. In comparison, our proposed HyperTab model
demonstrated superior performance with AUCs of 0.8429 on
the validation set and 0.8300 on the hold-out set, significantly
outperforming the SVM model’s AUC performance reported
by Choi et al. [36].
Diabetes is more commonly found in men than women,

particularly among those aged 35 to 69 years [60]. Further data
from the United States indicate that men diagnosed with type 2
diabetes at the ages of 30, 40 and 50 see their life expectancies
reduced by approximately 14, 9 and 5 years, respectively,
compared to non-diabetic individuals [10]. Given these find-
ings, our HyperTab-LIME model, which specifically targets
males aged 30 and over, offers a critical tool for the early
detection of prediabetes. This model not only aids healthcare
professionals in intervening early in the prediabetes stage to
potentially prevent the progression to full-blown diabetes but
also enhances the AI model’s utility by providing explainable
predictions. The integration of the LIME framework into the
HyperTab model ensures that each prediction is accompanied
by clear, interpretable data that elucidate the factors driving the
model’s assessments. This explainability is crucial for clinical
settings, where understanding the rationale behind diagnostic
assessments can significantly influence treatment decisions
and improve patient outcomes.
In practical terms, the proposed HyperTab-LIME model can

be deployed as part of routine health assessments in clinical
environments where early detection is crucial. For instance,
during regular health screenings, the model could analyze
patient data in real-time to assess the risk of prediabetes based
on a variety of factors such as age, blood pressure, and other
relevant healthmetrics. Themodel’s ability to provide explain-
able predictions is particularly valuable in clinical settings, as it
allows healthcare providers to understand the rationale behind
each assessment. This transparency is also crucial for patient
trust and compliance, as patients are more likely to engage
in preventative measures or treatments if they understand the
reasons behind the recommendations.

This study has several limitations that warrant mention.
Firstly, while the minimum Redundancy Maximum Relevance
(mRMR) feature selection method proved effective in our
analysis, numerous other feature selection techniques could
potentially yield better outcomes. Future research should
consider a comprehensive examination of various feature se-
lection methods applied to this high-dimensional dataset to
identify the most effective combination of features for en-
hancing the performance of prediabetes prediction models.
Secondly, the scope of our model training and evaluation was
confined to eight models: HyperTab, TabPFN, LightGBM,
XGBoost, Gradient Boost, AdaBoost, Random Forest and
Logistic Regression. Future studies could broaden this range
by incorporating additional machine learning models or em-
ploying ensemble techniques to improve predictive accuracy.
Thirdly, the LIME method, used for explaining individual
predictions from the black box machine learning models, does
not provide a comprehensive view of how features affect the
model’s overall predictions. Future work should incorporate
other interpretive methods that offer both local and global
explanations of the models’ decisions. Lastly, the stability and
consistency of the explanations provided by LIME might be
limited, as these can vary with the specific samples used or
the choice of local data points for building the local model.
Consequently, the interpretations offered by LIME should
be rigorously evaluated and discussed by medical experts to
ensure their validity and applicability in clinical settings.

6. Conclusions

Prediabetes, akin to diabetes, significantly escalates the risk
of microvascular complications and markedly increases the
chances of cardiovascular diseases and overall mortality. Pre-
vious research has shown that men diagnosed with type 2
diabetes at age 30 have their life expectancies reduced by
an average of 14 years compared to their nondiabetic coun-
terparts. Thus, early detection and intervention in predia-
betes among men aged 30 and older are crucial for prevent-
ing these health complications and potentially delaying or
halting the progression to diabetes, thereby prolonging life.
Prediabetes prediction remains a challenging area due to bi-
ased accuracy and a lack of explainability in many existing
machine learning methods. To address these issues, we in-
troduced a new hybrid model, HyperTab-LIME, which com-
bines the HyperTab model with the LIME framework to pre-
dict prediabetes in males over the age of 30. We analyzed
data from 1527 male participants aged 30 and older from
the 2022 Korea National Health and Nutrition Examination
Survey (KNHANES). Our model was compared with several
established models, including TabPFN, LightGBM, XGBoost,
Gradient Boost, AdaBoost, Random Forest and Logistic Re-
gression. The HyperTab-LIME model demonstrated superior
performance, with AUC scores of 0.8429 in the validation
set and 0.8300 in the hold-out set, surpassing not only the
baseline models in this research but also the performance of an
SVM model from a previous study using similar KNHANES
data. By integrating the optimized HyperTab model with
LIME, we created a reliable and interpretable diagnostic tool
for prediabetes. This innovative approach provides clear and
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detailed explanations of the predictive outcomes, significantly
enhancing the ability of healthcare professionals to understand
and trust the model’s predictions.
Future research directions should consider the implemen-

tation of various feature selection methods and the explo-
ration of alternative classification algorithms to enhance the
model’s predictive capabilities. Additionally, further research
can adopt different methods for model interpretation that pro-
vide not only local explanations but also global insights into
the workings of the black-box model. These advancements
will deepen our understanding of the prediabetes prediction
model’s decision-making processes and potentially improve its
accuracy and reliability.
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