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Abstract
Prostate cancer (PCa) is a widespread global health concern affecting males. Numerous
investigations have shown the substantial implications of inflammation to PCa
progression. To evaluate the predictive capacity of inflammatory-related genes (IRGs) in
PCa, we conducted univariate Cox regression analysis and the Least Absolute Shrinkage
and Selector Operation (LASSO) regression to formulate a prognostic model based on
IRG expression. The training dataset comprised The Cancer Genome Atlas (TCGA)
cohort, with validation performed using the cBioPortal cohort. Subsequently, an
overall survival (OS) prediction was performed using a nomogram within the TCGA-
PCa cohort, and we explored the association between the risk model and various
factors such as immune cell infiltration, immune-related pathway functionality, tumor
microenvironment characteristics, cancer stem cell scores and drug sensitivity. A
comprehensive selection of 17 IRGs was identified to establish this prognostic risk
model, where individuals with elevated risk scores exhibited unfavorable prognosis. The
genomic nomogram, constructed based on these central IRGs, demonstrated remarkable
accuracy in predicting PCa prognosis. Evaluation of tumor-infiltrating immune cells
and immune-related pathways suggested that high-risk groups maymanifest an immune-
active phenotype. Moreover, there was a significant correlation between the expression
levels of IRGs and tumor cell sensitivity to chemotherapeutic drugs. In conclusion,
these findings indicate that an IRG-based risk model associated with inflammation
can effectively predict PCa prognosis, presenting a promising strategy for further
investigation.
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1. Introduction

Prostate cancer (PCa) is the most prevalent malignancy in
males, accounting for approximately 20% of all cancer cases
and contributing to 6.8% of male cancer-related deaths glob-
ally [1]. In the United States, it has been observed that 14% to
24% of individuals diagnosed with PCa are classified as high-
risk patients, even after undergoing prostate-specific antigen
(PSA) screening [2–5]. High-risk prostate cancer is defined
by a preoperative PSA level exceeding 20 ng/mL, a Gleason
score of 8 or higher, or a clinical stage of T2c or greater [6, 7].
Patients diagnosed with PCa exhibiting a high-risk profile
display significant diversity, leading to uncertainty regarding
the most appropriate treatment strategy [8, 9]. Despite the
availability of various treatment options, including radical
prostatectomy, radiation therapy and hormone therapy, either
as monotherapies or in combination, the recurrence rate re-
mains substantially elevated regardless of the chosen treatment
modality [10, 11].

The comprehensive identification of the causal factors re-
sponsible for the initiation and progression of PCa remains an
ongoing area of research. PCa prominently displays an inflam-
matory component, recognized as a fundamental hallmark of
cancer influencing various stages of carcinogenesis and tumor
advancement [12]. Likewise, there is evidence indicating
a connection between prostatitis, a frequently encountered
condition characterized by acute or chronic prostate infection,
and an increased susceptibility to PCa [13, 14]. The prevail-
ing hypothesis suggests that persistent inflammation within
the prostate gland stimulates the production of inflammatory
cytokines and reactive oxygen species, promoting increased
cellular proliferation and potentially facilitating carcinogenesis
[15–18].

In PCa, the presence of inflammatory alterations is charac-
terized by an increased infiltration of inflammatory cells and
the release of proinflammatory cytokines, which contributes
to the activation of numerous signaling pathways associated
with PCa progression [19, 20]. Although previous research
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has established a link between inflammation and the devel-
opment and metastasis of PCa, it remains uncertain whether
inflammation and its associated genes can impact PCa progno-
sis. Therefore, it is essential to identify inflammatory-related
genes (IRGs) associated with PCa to provide a scientifically
grounded prognosis.
The primary objective of this study was to investigate the

influence of inflammation and its associated genes on the
prognosis of PCa patients. We conducted an analysis involving
17 IRGs to establish a risk signature by integrating high-
throughput data for predicting PCa patient prognosis, and the
findings demonstrate that our prognostic model achieves a
high level of accuracy in predicting PCa prognosis and could
serve as a novel and valuable reference point for the clinical
prediction and management of PCa.

2. Methods

2.1 Data acquisition
In this study, we accessed publicly available data,
including transcriptome profiling (RNA-seq) data, clinical
information, immune subtypes, and stemness scores
derived from DNA-methylation (DNAss) and mRNA
(RNAss) analyses, encompassing 475 PCa samples and 52
para-cancerous samples. These datasets were retrieved
from The Cancer Genome Atlas (TCGA) database,
accessible at https://portal.gdc.cancer.gov/. For external
validation, we utilized an additional cohort comprising
268 samples from the cBioPortal cohort [21, 22]. To
identify relevant IRGs, we curated a set of 200 genes from
the “HALLMARK_INFLAMMATORY_RESPO-NSE”
gene set, sourced from the GSEA database, available at
http://www.gsea-msigdb.org/ [23].

2.2 Screening and visualizing hub IRGs
Univariate Cox hazards regression analysis was performed
on the acquired prognostic IRGs and identified potential hub
IRGs using the “survival” R package, and the least absolute
shrinkage and selection operator (LASSO) regressionwas used
to refine this set of IRGs. To identify the common genes of
interest, a Venn diagram was constructed. The visualization
of hub IRGs was accomplished through a heatmap generated
with the “pheatmap” R package. Furthermore, we generated
a forest plot using the “forest plot” R package to present the
hazard ratio (HR), 95% confidence interval (CI), and p-value
for each variable.

2.3 Construction and validation of a risk
assessment model
Subsequently, we established the risk assessment model
through multivariate Cox regression analysis. Patient risk
scores were calculated using the following formula: risk score
= β1 × 1 + β2 × 2 + ... + βi × i, where × i represents the
expression level of genes, and βi signifies the corresponding
coefficient obtained from the multivariate Cox regression
analysis. Patients diagnosed with PCa in both the TCGA and
cBioPortal cohorts were categorized into either the low-risk

or high-risk group based on their risk scores, which were
determined using the median value. To assess the prognostic
distinction between these two groups, we conducted Kaplan-
Meier survival analysis. Furthermore, we evaluated the
predictive performance by calculating the area under the
time-dependent receiver operating characteristic (ROC) curve
(AUC) using the “time ROC” R package.

2.4 Prognostic nomogram and clinical
characteristics value evaluation
To explore the relationship between IRGs and PCa patients,
we developed a genomic nomogram using the identified IRGs
to predict the 1-, 3- and 5-year survival probabilities for each
patient with the “rms” R package. Additionally, we performed
univariate andmultivariate CoxHazards regression analyses to
determine the significance of the risk score, along with other
potential prognostic markers such as age and TNM (Tumor
node metastasis) classification; T: Tumor; N: Lymph Node;
M: Metastasis), in predicting the prognosis of PCa patients.

2.5 Investigations of the tumor
microenvironment (TME), function
enrichment analysis, DNA methylation
pattern and mRNA expression
Gene Set Enrichment Analysis (GSEA) was conducted to ex-
amine differences in enrichment between the high-risk and
low-risk groups concerning the activity of immune-related
pathways. To assess and quantify variations in immune cell ac-
tivity and immune function between these groups, we utilized
single-sample gene set enrichment analysis (ssGSEA) with the
“GSEABase” and “GSVA” R packages [24, 25]. Furthermore,
we employed the “ESTIMATE” R package to compute the
immune score, stromal score and ESTIMATE score [26].

2.6 Drug sensitivity analysis
To investigate the potential correlation between IRGs and
the sensitivity of chemotherapeutic drugs, we acquired
the NCI60 drug response data using the CellMiner tool at
https://discover.nci.nih.gov/cellminer. This dataset included
information from 60 distinct cell lines representing 9 different
types of malignancies [27]. Then, Pearson correlation analysis
was performed to assess the relationship between IRGs
and the efficacy of chemotherapy drugs that have received
approval from the Food and Drug Administration (FDA) or
are currently undergoing clinical trials.

2.7 Statistical analysis
All statistical analyses were conducted using R version 4.0.3
(https://www.R-project.org/). To evaluate the association be-
tween risk scores and cancer stemness scores, Spearman’s
test was employed. Pearson’s test was utilized to assess the
correlation between gene expression and drug sensitivity. Ad-
ditionally, the Wilcoxon rank-sum test, a commonly used
nonparametric statistical test for comparing two groups, was
applied. A significance level of p < 0.05 was considered
statistically significant.
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TABLE 1. Univariate Cox regression analysis of 44 identified IRGs.
Genes HR HR.95L HR.95H Hazard.Ratio p.value
ADRM1 3.020 1.585 5.755 3.020 (1.585–5.755) <0.001
APLNR 1.386 1.138 1.687 1.386 (1.138–1.687) 0.001
BDKRB1 2.560 1.187 5.520 2.560 (1.187–5.520) 0.016
BST2 1.244 1.038 1.490 1.244 (1.038–1.490) 0.018
BTG2 0.819 0.674 0.995 0.819 (0.674–0.995) 0.044
C3AR1 1.434 1.105 1.861 1.434 (1.105–1.861) 0.007
C5AR1 1.364 1.080 1.723 1.364 (1.080–1.723) 0.009
CCL17 1.279 1.056 1.549 1.279 (1.056–1.549) 0.012
CCL24 1.331 1.091 1.624 1.331 (1.091–1.624) 0.005
CCRL2 1.530 1.005 2.331 1.530 (1.005–2.331) 0.047
CD14 1.410 1.097 1.814 1.410 (1.097–1.814) 0.007
CLEC5A 1.852 1.085 3.161 1.852 (1.085–3.161) 0.024
CSF3R 1.668 1.196 2.326 1.668 (1.196–2.326) 0.003
DCBLD2 0.614 0.458 0.822 0.614 (0.458–0.822) 0.001
ADGRE1 1.987 1.097 3.599 1.987 (1.097–3.599) 0.024
FZD5 0.731 0.585 0.913 0.731 (0.585–0.913) 0.006
GABBR1 1.530 1.155 2.026 1.530 (1.155–2.026) 0.003
GPR132 1.392 1.044 1.856 1.392 (1.044–1.856) 0.024
IL10RA 1.310 1.034 1.659 1.310 (1.034–1.659) 0.025
IL18 1.315 1.022 1.691 1.315 (1.022–1.691) 0.033
IL1R1 0.777 0.615 0.982 0.777 (0.615–0.982) 0.035
INHBA 1.241 1.038 1.484 1.241 (1.038–1.484) 0.018
IRF7 1.743 1.293 2.350 1.743 (1.293–2.350) <0.001
KCNJ2 1.408 1.063 1.865 1.408 (1.063–1.865) 0.017
LTA 1.531 1.107 2.116 1.531 (1.107–2.116) 0.010
LY6E 1.322 1.030 1.696 1.322 (1.030–1.696) 0.029
MEFV 1.692 1.021 2.805 1.692 (1.021–2.805) 0.041
MSR1 1.424 1.110 1.828 1.424 (1.110–1.828) 0.005
NDP 0.688 0.545 0.869 0.688 (0.545–0.869) 0.002
OPRK1 1.204 1.037 1.396 1.204 (1.037–1.396) 0.014
OSM 1.382 1.109 1.722 1.382 (1.109–1.722) 0.004
PCDH7 0.760 0.613 0.943 0.760 (0.613–0.943) 0.013
PIK3R5 1.629 1.197 2.218 1.629 (1.197–2.218) 0.002
PTAFR 1.325 1.011 1.736 1.325 (1.011–1.736) 0.041
PTGIR 2.623 1.723 3.994 2.623 (1.723–3.994) <0.001
SCARF1 2.205 1.549 3.139 2.205 (1.549–3.139) <0.001
SCN1B 1.440 1.031 2.013 1.440 (1.031–2.013) 0.032
SEMA4D 1.772 1.081 2.905 1.772 (1.081–2.905) 0.023
SLC7A1 0.752 0.594 0.952 0.752 (0.594–0.952) 0.018
SPHK1 1.559 1.183 2.053 1.559 (1.183–2.053) 0.002
SRI 1.872 1.135 3.089 1.872 (1.135–3.089) 0.014
STAB1 1.517 1.168 1.969 1.517 (1.168–1.969) 0.002
TNFAIP6 1.452 1.057 1.995 1.452 (1.057–1.995) 0.021
TNFRSF1B 1.292 1.004 1.661 1.292 (1.004–1.661) 0.046
HR: hazard ratio; HR.95L&H: HR 95% confidence interval; L: lower; H: higher.
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3. Results

3.1 Identification of prognostic IRGs

Recognizing the significant influence of the inflammatory re-
sponse on the development and progression of PCa, we com-
piled a dataset of human inflammatory response genes from
the GSEA database, comprising 200 genes referred to as IRGs.
To comprehensively understand the relevance of these genes
in PCa, we initially conducted a univariate Cox proportional
hazards regression analysis, which revealed 44 IRGs signifi-
cantly associated with overall survival (p < 0.05) (Table 1).
Subsequently, we applied LASSO regression analysis to the
IRGs, utilizing 10-fold cross-validation to identify optimal
tuning parameter values. As shown in Fig. 1A, all coefficients
retained non-zero values, and 22 IRGs were stable (Fig. 1B).
Then, a total of 17 IRGs were identified as common factors,
represented in the Venn diagram (Fig. 1C), and their expression
patterns of these 17 IRGs in PCa are shown through a heatmap
(Fig. 1D).

3.2 Construction and validation of a risk
assessment model in PCa

Next, all the factors derived from the LASSO-Cox regres-
sion analysis were included in the multivariate Cox regres-
sion analysis (Fig. 1E), based on which a model was es-
tablished involving 17 IRGs, and a risk score formula was
derived as follows: Risk score = Exp (BTG2) × (−0.3188)
+ Exp (C3AR1) × (0.6855) + Exp (CCL24) × (0.3293) +
Exp (CCRL2) × (−1.5837) + Exp (CD14) × (0.3979) + Exp
(CLEC5A) × (−0.7633) + Exp (DCBLD2) × (−0.7625) +
Exp (GABBR1) × (0.2648) + Exp (KCNJ2) × (0.3135) +
Exp (OPRK1) × (0.2719) + Exp (OSM) × (0.5280) + Exp
(SCARF1) × (0.8879) + Exp (SCN1B) × (0.5578) + Exp

(SEMA4D) × (0.5921) + Exp (SLC7A1) × (−0.3884) + Exp
(SPHK1) × (0.5419) + Exp (TNFRSF1B) × (−0.6780) (Ta-
ble 2). The correlations among these 17 IRGs are shown in
Fig. 1F. Subsequently, a nomogram was constructed using
these 17 IRGs to predict the 1-, 3- and 5-year survival of
PCa patients (Fig. 2A). The cumulative score of each gene
was used to calculate the total score, and vertical lines were
drawn downwards at the corresponding positions on the total
score axis to determine the relative survival rates at 1-, 3-
and 5-year intervals. Based on the calculated median risk
score, patients were categorized into two groups: the low-risk
and high-risk groups. Kaplan-Meier survival curves demon-
strated a statistically significant difference between the two
cohorts, indicating that those with high-risk scores had a less
favorable prognosis compared to those with low-risk scores
(Fig. 2B). Subsequently, a time-dependent ROC analysis was
conducted to assess the prognostic performance of the IRGs.
TheAUC for the prognosticmodel at 1-, 3- and 5-year intervals
were determined to be 0.856, 0.764 and 0.828, respectively
(Fig. 2C). To validate the prognostic power of the IRGs, an
external validation cohort from the cBioPortal dataset was
utilized. Consistently, patients classified as high-risk exhib-
ited significantly shorter overall survival compared to those
classified as low-risk (Fig. 2D). The AUC values for 1-, 3-
and 5-year intervals were 0.756, 0.768 and 0.787, respectively
(Fig. 2E). Additionally, TCGA-PCa patients were divided into
high-risk and low-risk groups based on the median risk score,
which served as the threshold (Fig. 2F). A high-risk score
was associated with an increased likelihood of mortality, as
evident from the distribution of IRG risk scores and patient
survival status (Fig. 2G). These results suggest that the risk
score obtained from these 17 IRGs demonstrates a high degree
of accuracy and substantial predictive value for assessing the
overall survival of PCa patients.

TABLE 2. Multivariate Cox regression analysis of the 17 significant IRGs.
Genes Coefficients HR HR.95L HR.95H p.value
BTG2 −0.3188 0.7270 0.5390 0.9806 0.0368
C3AR1 0.6855 1.9848 1.1256 3.5000 0.0178
CCL24 0.3293 1.3899 1.1004 1.7557 0.0057
CCRL2 −1.5837 0.2052 0.0685 0.6152 0.0047
CD14 0.3979 1.4887 0.8616 2.5723 0.0539
CLEC5A −0.7633 0.4661 0.2059 1.0553 0.0671
DCBLD2 −0.7625 0.4665 0.2940 0.7401 0.0012
GABBR1 0.2648 1.3032 0.9392 1.8083 0.0830
KCNJ2 0.3135 1.3682 0.9242 2.0256 0.0873
OPRK1 0.2719 1.3124 1.1130 1.5477 0.0012
OSM 0.5280 1.6955 1.1840 2.4280 0.0040
SCARF1 0.8879 2.4300 1.3428 4.3973 0.0033
SCN1B 0.5578 1.7468 1.2150 2.5113 0.0026
SEMA4D 0.5921 1.8079 0.9289 3.5184 0.0813
SLC7A1 −0.3884 0.6781 0.4905 0.9376 0.0188
SPHK1 0.5419 1.7193 1.0435 2.8326 0.0334
HR: hazard ratio; HR.95L&H: HR 95% confidence interval; L: lower; H: higher.
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FIGURE 1. Prognostic inflammatory-related gene identification process in prostate cancer. (A,B) Key inflammatory-
related genes were selected using LASSO regression analysis. (C) A Venn plot highlights the 17 common prognostic genes
associated with inflammatory responses. (D) The heatmap displays the expression of these 17 genes in PCa and normal tissues.
(E) A forest plot shows hazard ratios for the 17 prognostic genes, forming the basis for a prognostic model. (F) The correlation plot
of signature genes, with red indicating a positive connection and blue indicating a negative association. LASSO: Least Absolute
Shrinkage and Selector Operation; PCa: prostate cancer.
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FIGURE 2. Construction and evaluation of the prognosticmodel using hub IRGs. (A) A nomogram designed for predicting
1-, 3- and 5-year OS of PCa patients. Vertical lines extend upward to determine values for each variable. The total score is
obtained by summing individual variable values, and the anticipated likelihood of OS is determined by extending a vertical line
downward from the Total Points axis. (B) Kaplan-Meier curves illustrating the outcomes of low- and high-risk groups in TCGA.
(C) Kaplan-Meier curves showing the outcomes of low- and high-risk groups in the cBioPortal cohorts. (D) ROC curves assessing
the predictive ability of the risk score for 1-, 3- and 5-year OS in TCGA. (E) ROC curves assessing the predictive ability of the
risk score for 1-, 3- and 5-year OS in the cBioPortal cohorts. (F) PCa patients categorized into high- and low-risk groups based on
the risk score. (G) Distribution of IRG risk scores and patient survival status. OS: overall survival; PCa: prostate cancer; TCGA:
The Cancer Genome Atlas; ROC: receiver operating characteristic; IRG: inflammatory-related genes.
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FIGURE 3. Univariate and multivariate Cox regression analyses of the study cohort. (A,B) Univariate and multivariate
Cox regression analyses for the TCGA dataset, assessing the impact of various clinicopathological factors and the risk score
on prognosis. (C,D) Univariate and multivariate Cox regression analyses for the cBioPortal dataset, evaluating the influence of
different clinicopathologic factors and the risk score on prognosis. PSA: prostate-specific antigen; TMB: tumor mutation burden.

3.3 Independent prognostic value of the
IRG risk score
We included the risk score and clinical factors in both uni-
variate and multivariate analyses to assess the potential of the
IRGs as independent predictors. In the TCGA population,
pathological (T) stage, PSA value and risk score were iden-
tified as having a significant association with overall survival
(OS) based on both univariate and multivariate Cox regression
models (Fig. 3A,B). In the univariate analysis (p< 0.001), the
hazard ratio (HR) for the risk score was 1.140 with a 95%
confidence interval (CI) of 1.107–1.175. In the multivariate
analysis (p < 0.001), the HR for the risk score was 1.128
with a 95% CI of 1.094–1.164. Similarly, in the cBioPortal
cohort, univariate and multivariate Cox regression analyses
revealed a significant correlation between OS and T stage as
well as the risk score (Fig. 3C,D). In the univariate analysis (p
= 0.002), the HR for the risk score was 1.002 with a 95% CI of
1.001–1.004. In the multivariate analysis (p = 0.005), the HR
for the risk score was 1.002 with a 95% CI of 1.001–1.003.
Collectively, these findings provide strong evidence that the
IRG risk score serves as a valuable independent prognostic
factor for PCa.

3.4 Tumor microenvironment assessment
using the IRG risk score
We used single-sample gene set enrichment analysis (ssGSEA)
to quantify 16 immune cell subsets and 13 immune-related
functions and evaluate the potential of the IRG risk score
in assessing immunological features and elucidating the re-
lationship between the risk score and overall immune status.
The analysis of immune cell infiltration revealed a signifi-

cant positive correlation between the risk score of IRGs and
the abundance of various immune infiltrating cells, including
tumor-infiltrating lymphocytes (TIL), CD8+ (cluster of differ-
entiation 8) T cells, dendritic cells (DCs), macrophages, plas-
macytoid dendritic cells (pDCs), and T helper cells (Fig. 4A).
Furthermore, the analysis of immune-related pathways indi-
cated that immunological responses were significantly more
pronounced in the high-risk group compared to the low-risk
group (Fig. 4B). We also examined the immunophenotyping
distribution of different tumor sample types in the TCGA
database, revealing risk scores for four distinct immune types
(Fig. 4C). To gain a deeper understanding of the underlying
functionality of IRGs and their associated signal transduction
pathways, we conducted an extensive investigation using Gene
Set Enrichment Analysis (GSEA). The results demonstrated
significant differences in pathway enrichment between the
low-risk and high-risk groups (Fig. 4D). Notably, the high-risk
group exhibited positive associations with immune pathways
such as cytolytic activity, HLA (human leukocyte antigen),
MHC (major histocompatibility complex) class I, and oth-
ers. These findings suggest that PCa patients with high-risk
scores may be more responsive to immunotherapy due to their
heightened immune regulation. This insight may offer a new
perspective to enhance the effectiveness of immunotherapy in
the context of PCa treatment.

Considering the TME and the presence of stromal cells and
immune cells play significant roles in cancer, we conducted
a correlation analysis to explore the relationship between the
risk score and the TME, aiming to better understand the impact
of TME on PCa patients. The results reveal a significant
positive correlation between the risk score and the presence
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FIGURE 4. Correlation analysis between the risk score and immune infiltration status. (A) Comparison of immune cell
subsets in low- and high-risk groups. (B) Comparison of immune function and pathways in the low- and high-risk groups. (C)
Differences in immune classification among PCa patients with different risk scores. (D) Functional enrichment in risk groups
revealed by GSEA analysis. (E) Scatterplot depicting the correlation between the stromal cell score. (F) Scatterplot depicting the
correlation between the immune cell score. (G) Scatterplot depicting the correlation between DNAss. (H) Scatterplot depicting
the correlation between RNAss. (*p < 0.05, **p < 0.01, ***p < 0.001). PCa: prostate cancer; GSEA: Gene Set Enrichment
Analysis; DNAss: DNA methylation-based stemness scores; RNAss: RNA expression-based stemness scores.

of stromal cells (p < 0.05) as well as immune cell infiltration
(p < 0.05) (Fig. 4E,F). Furthermore, we conducted a Spear-
man correlation analysis to investigate the association between
the risk score and cancer stemness scores based on the stem
cell score derived from DNA methylation (DNAss) and RNA
sequencing (RNAss) (Fig. 4G,H). The findings demonstrate a
statistically significant positive relationship between DNAss
and the risk score (p < 0.05). Consequently, these results
suggest a potential and significant correlation between the risk
score of the prognostic model and the activity level of cancer
stem cells, providing valuable insights into the role of cancer
stemness in PCa.

3.5 The relationship between IRGs and drug
sensitivity

We utilized the NCI-60 database, which comprises 60 dis-
tinct human cancer cell lines, to investigate the relationship
between the expression levels of signature genes and the sus-
ceptibility of these cell lines to various drugs (Fig. 5). The
study findings revealed a positive correlation between elevated
levels of C3AR1 (Complement Component 3a Receptor 1),
CLEC5A (C-Type Lectin Domain Family 5 Member A), OSM
(Oncostatin M), SEMA4D (Semaphorin 4D) and SCARF1
(Scavenger Receptor Class F Member 1) and the sensitivity
of cancer cells to several chemotherapeutic drugs, including
Denileukin Diftitox Ontak, Artemether, ABT-199, Nelarabine,
Methylprednisolone, Fluphenazine, Zalcitabine, Fludarabine
and Ribavirin. Notably, the expression of SCARF1 demon-
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FIGURE 5. Investigation of gene-drug sensitivity using the cellminer database. In this figure, we explored gene-drug
sensitivity utilizing the CellMiner database and identified the top 16 medications that exhibit the strongest connection with gene
expression in an inflammatory-related prognostic model. Cor: correlation.

strated a positive association with the sensitivity of cancer
cells to Denileukin Diftitox Ontak, Fludarabine, Methylpred-
nisolone, Nelarabine, Zalcitabine, and Ribavirin. Conversely,
the upregulation of C3AR1 was linked to increased resis-
tance to Irofulven in cancer cells (Fig. 5). Table 3 shows the
correlation analysis results, indicating significant associations
with a p-value of < 0.001. These findings provide empirical
evidence supporting the efficacy of the risk score in accurately
predicting the responsiveness of cancer cells to these drugs,
supporting the potential use of our proposed model in clinical
settings to provide guidance in enhancing the precision of drug
selection and treatment strategies.

4. Discussion

Despite recent advancements in our understanding of the bi-
ological behavior of PCa, it continues to be the predominant
malignancy among males worldwide [28]. There is a growing
recognition that the course of cancer in patients depends on
a complex interplay between the tumor and the host’s in-
flammatory response [29, 30]. Indeed, the involvement of
inflammation in various other types of cancers has been well-
established. Approximately 20% of humanmalignancies, such
as those affecting the stomach, liver, and large intestine, are

known to originate from chronic inflammation [16, 31–33].
Accumulating evidence suggests that a variety of inflammation
mediators, including factors regulating the tumor microenvi-
ronment, activated transcriptional factors, pattern recognition
receptors, cytokines and chemokines, play a significant role in
the development, metastasis and prognosis of various human
tumors, including PCa [34–37].
This study involved the development and validation of a

novel prognostic model utilizing 17 inflammatory response
genes, which exhibited a high degree of accuracy in predicting
the prognosis of PCa patients. A nomogram was constructed
using the identified IRGs within the TCGA cohort to estimate
the 1-, 3- and 5-year overall survival rates for PCa patients. No-
tably, significant disparities in overall survival were observed
between patients with high-risk scores and those with low-risk
scores in both the training and validation datasets. Further-
more, both univariate andmultivariate Cox regression analyses
revealed that the risk score possessed independent prognostic
significance, effectively predicting the survival outcomes of
PCa patients. These findings underscore a robust association
between the risk score and various clinicopathological charac-
teristics, suggesting the potential of the risk score as a reliable
prognostic tool for predicting the outcomes of PCa patients.
Moreover, the study revealed a correlation between the risk
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TABLE 3. Pearson correlation analysis between the expression of the 17 IRGs and chemotherapy drug sensitivity
(shown are the 78 with p < 0.001).

Gene Drugs Cor p.value

CARF1 Methylprednisolone 0.732640327 2.86 × 10−11

SCARF1 Nelarabine 0.719889353 9.05 × 10−11

CLEC5A Artemether 0.718541463 1.02 × 10−10

SCARF1 Dexamethasone Decadron 0.712263660 1.75 × 10−10

OSM Nelarabine 0.698284315 5.57 × 10−10

OSM Methylprednisolone 0.680533825 2.21 × 10−9

SEMA4D Zalcitabine 0.667448846 5.74 × 10−9

SEMA4D Nelarabine 0.658337585 1.09 × 10−8

OSM Fluphenazine 0.634060451 5.73 × 10−8

C3AR1 Denileukin Diftitox Ontak 0.624168304 9.90 × 10−8

C3AR1 Irofulven −0.581910616 1.08 × 10−6

SCARF1 Fludarabine 0.580322399 1.17 × 10−6

SCARF1 Zalcitabine 0.574509681 1.59 × 10−6

CLEC5A ABT-199 0.566971598 2.32 × 10−6

OSM Zalcitabine 0.564243496 2.66 × 10−6

SCARF1 Ribavirin 0.544935471 6.74 × 10−6

C3AR1 Isotretinoin 0.544605132 6.85 × 10−6

OSM Pipobroman 0.537497963 9.50 × 10−6

TNFRSF1B Crizotinib 0.525435059 1.63 × 10−5

C3AR1 Carmustine 0.525315019 1.64 × 10−5

OSM Ribavirin 0.512756781 2.81 × 10−5

OSM Thiotepa 0.49811976 5.12 × 10−5

CLEC5A Hydroxyurea 0.49686213 5.39 × 10−5

OSM Idarubicin 0.493478103 6.17 × 10−5

C3AR1 Estramustine 0.492490569 6.41 × 10−5

OSM Triethylenemelamine 0.49035237 6.98 × 10−5

OSM Etoposide 0.486720695 8.04 × 10−5

C3AR1 Fluphenazine 0.483938761 8.95 × 10−5

SEMA4D Ribavirin 0.482001356 9.64 × 10−5

C3AR1 auranofin 0.481349531 9.88 × 10−5

OSM Dexamethasone Decadron 0.481275414 9.91 × 10−5

C3AR1 Nelfinavir 0.479159675 0.000107422

SCN1B Palbociclib −0.479074824 0.000107768

OSM DECITABINE 0.477732485 0.000113382

CLEC5A Megestrol acetate 0.476523332 0.000118667

SEMA4D Palbociclib 0.475939593 0.000121299

OSM Chlorambucil 0.475426207 0.000123658

SCARF1 Fluphenazine 0.474493407 0.000128051

C3AR1 Megestrol acetate 0.474344406 0.000128766

OSM Hydroxyurea 0.472306001 0.000138922
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TABLE 3. Continued.
Gene Drugs Cor p.value

CLEC5A Cyclophosphamide 0.471781437 0.000141652

SEMA4D Methylprednisolone 0.465587612 0.000177819

CLEC5A Nandrolone phenpropionate 0.463489099 0.000191872

C3AR1 Artemether 0.461866301 0.000203429

OSM Dexrazoxane 0.459815692 0.000218942

C3AR1 Alectinib 0.458489624 0.000229542

OPRK1 MONENSIN SODIUM −0.45509378 0.000258858

DCBLD2 Artemether −0.454977621 0.000259919

OSM Teniposide 0.453464788 0.000274101

OSM IDOXURIDINE 0.451903329 0.000289476

OSM Valrubicin 0.45181132 0.000290406

OSM Uracil mustard 0.450036076 0.000308892

SCARF1 Raltitrexed 0.448464457 0.000326147

C3AR1 rifa 0.447949184 0.000331992

SCARF1 Asparaginase 0.447314046 0.000339329

C3AR1 Lomustine 0.446607108 0.000347668

SCARF1 Hydroxyurea 0.446446673 0.000349586

TNFRSF1B Artemether 0.444263098 0.000376672

OSM Melphalan 0.443818735 0.000382412

OSM BMN-673 0.442936265 0.000394049

SCARF1 Cytarabine 0.441758937 0.000410076

TNFRSF1B LDK-378 0.44175406 0.000410143

SCARF1 Uracil mustard 0.435401571 0.000507321

KCNJ2 Pazopanib −0.433546684 0.0005394

OSM Nitrogen mustard 0.432191891 0.000563981

SEMA4D Idarubicin 0.431698971 0.000573173

DCBLD2 auranofin −0.430753758 0.000591181

SEMA4D Hydroxyurea 0.427179062 0.000664016

SEMA4D Asparaginase 0.422936188 0.000760949

SCARF1 Chlorambucil 0.421784927 0.00078937

OSM M-AMSA 0.420448391 0.000823566

CLEC5A auranofin 0.419580922 0.00084647

TNFRSF1B ciclosporin 0.418882439 0.000865329

C3AR1 Dromostanolone Propionate 0.417659117 0.000899275

SEMA4D Dexrazoxane 0.416885111 0.000921368

CLEC5A Masoprocol 0.41630485 0.000938252

OSM Cytarabine 0.415985959 0.000947648

C3AR1 Cyclophosphamide 0.415764105 0.000954236

IRGs: inflammatory-related genes; Cor: correlation.
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score of IRGs and the tumor’s immunological status, further
highlighting the potential clinical relevance of this prognostic
model in PCa immunotherapy. Lastly, it was demonstrated that
the expression levels of the prognostic genes were significantly
correlated with the sensitivity of chemotherapeutic agents,
emphasizing the utility of this model in aiding the selection
of optimal treatment strategies for PCa patients.
The TME has gained widespread recognition for its close

association with various processes such as tumor cell prolifer-
ation, survival, invasion and metastasis [38]. In this context,
the inflammatory response plays a crucial role in the systemic
immune response, serving as a critical mechanism for the early
recruitment of inflammatory factors and the establishment of
the tumor microenvironment [39]. In addition to stimulating
the immune system and contributing to the inflammatory re-
sponse, inflammatory response-related genes also play a role in
shaping the TME [40]. PCa is often characterized as a “cold”
tumor due to its immunosuppressive microenvironment [41–
44]. TILs have been implicated in the progression of PCa
by inhibiting the activity of T-effector cells [45]. The present
study revealed a significant positive correlation between the
risk score of IRGs and the abundance of immune infiltrating
cells. Thus, our present research findings suggest that the IRGs
included in the model could potentially serve as valuable tools
for guiding immunotherapy in PCa patients.
Although the risk score of IRGs has shown potential in

predicting the immunological status and prognosis of PCa pa-
tients, our study had some limitations. The therapeutic useful-
ness of this predictive model should be verified by prospective
research, as it was created and validated using retrospective
data from the TCGA and cBioPortal public databases. The
therapeutic applicability of this predictive model should be
confirmed through prospective studies, as it was developed
and validated using retrospective data from the TCGA and
cBioPortal public databases. In our future work, we plan to
conduct experimental validation, both in vitro and in vivo,
potentially extending our investigations to clinical samples.
Moreover, exploring the underlying molecular mechanisms is
another avenue requiring further examination.

5. Conclusions

Examining the prognostic implications of inflammatory-
related factors in PCa patients is a significant and innovative
approach. In this present study, we developed a predictive
signature comprising 17 IRGs associated with inflammation,
which demonstrated high accuracy in predicting the survival
outcomes of PCa patients, as validated in both the training
dataset (TCGA) and the validation dataset (cBioPortal).
Collectively, these IRGs hold potential as valuable biomarkers
and therapeutic targets for individuals diagnosed with PCa,
offering a promising avenue for further scientific investigation.
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