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Abstract
This study aims to propose a radiomics model to identify male patients suffering from
renal pelvis urothelial carcinoma (RPUC)with preoperative lymph node (LN)metastasis.
In a study involving 133 male RPUC patients, 94 were assigned to a training group
and 39 to a testing group. Their arterial-phase computed tomography (CT) images
were analyzed to extract radiomics features, which were then refined through data
reduction and feature selection. Using the least absolute shrinkage and selection operator
(LASSO), a radiomics signature was created, whichwas then incorporated into a Logistic
regression classifier in the training group to predict pathologic lymph node metastases.
A comprehensive radiomics model was developed using multivariate logistic regression,
integrating clinical risk factors. The model’s efficacy was evaluated in both sets using
discrimination, calibration and decision curve analyses in both the training and testing
sets. The constructed signature, composed of eight promising imaging-derived features,
showed strong discrimination ability in both sets (training: area under the curve (AUC)
0.836 and testing: AUC, 0.817). When combined with CT-reported tumor status, the
radiomics model demonstrated excellent calibration and discrimination, achieving an
AUC of 0.849 in the training set and 0.851 in the testing set. The radiomics model,
incorporating both the radiomics signature and the CT-reported tumor status, could help
in the preoperative individualized prediction of LN metastasis in male patients with
RPUC.
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1. Background

Renal pelvis urothelial carcinoma (RPUC) is an uncommon
condition, accounting for 5% to 10%of all diagnosed urothelial
cancers, with a higher occurrence in men (male:female ratio =
2:1) [1]. In China, urothelial carcinoma incidence from the
renal pelvis and ureters is notably higher, ranging from 20%
to 30%, surpassing rates observed in Western countries [2].
Recent research reports male gender as an independent risk
factor associated with RPUC [3]. In the last twenty years, the
percentage of male patients with RPUC has steadily risen, and
these patients notably face a lower cancer-specific survival rate
compared to female patients. The recurrence and mortality
rates associated with RPUC in male patients have gained in-
creased attention among clinicians. The unusual presentation
of this condition makes it difficult to gather sufficient evidence
for risk stratification to guide therapeutic choices [4]. In recent
years, collaborative efforts across multiple institutions have
improved our understanding of crucial prognostic variables
and the natural course of the disease.

Pelvic lymph node dissection (LND) is considered an im-
portant element in the surgical treatment of urothelial bladder
cancer [5]. While it assists in postoperative risk assessment
and potentially enhances patient survival, definitive evidence
supporting these advantages is yet to be established through
prospective trials [6]. In contrast, the significance of LND
in those undergoing radical nephroureterectomy (RNU) for
RPUC is still debatable partly due to its low incidence. Nev-
ertheless, it is essential to recognize that LND plays a signif-
icant role in the prognostic management of patients already
diagnosed with LN metastasis (LNM) [7]. Therefore, early
confirmation of preoperative LNM in male RPUC patients
are of great importance for guiding subsequent treatment and
assessing prognosis.
Computed tomography (CT) plays a vital role as a non-

invasive, rapid and precise imaging technique, establishing
itself as a critical diagnostic tool for urothelial carcinoma.
CT imaging enables the visualization of urothelial cancer,
providing valuable information regarding its location, extent,
depth of invasion, and potential detection of LNM in patients
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[8]. Despite its effectiveness, CT imaging has limitations, as
it cannot directly reveal details within small LN metastases,
which may lead to potential false-negative results [9]. Ad-
ditionally, the widespread distribution of LNs presents chal-
lenges for the detection of metastases using conventional CT
[10]. In recent years, the emerging field of radiomics has
harnessed advanced technologies, such as big data mining, to
extract subtle quantitative features from medical images that
are imperceptible to the naked eye. Through the analysis of the
correlation between image features and clinical data, radiomics
establishes predictive models for diseases, providing robust
decision-support tools in the field of oncology [11]. Currently,
significant progress has been made in radiomics for predicting
tumor LNM across various cancers, including breast cancer
[12], rectal cancer [13], liver cancer [14], lung cancer [15],
and others. However, it is worth noting that there have been
no reported findings related to RPUC in this context.
Therefore, we utilize CT images to extract radiomics fea-

tures strongly associated with LNM, identify radiomics mark-
ers and, ultimately, integrate them with clinical features to
develop a comprehensive model for estimating the LNM in
male patients with RPUC.

2. Materials and methods

2.1 General information
We retrospectively analyzed the data of 133male patients diag-
nosed with RPUC from 2018 to 2022 in the surgical database
of the urology department. Inclusion criteria comprised: (1)
initial postoperative pathological confirmation of RPUC in
male patients, (2) urography performed within 20 days prior
to surgery, and (3) acceptable quality of enhanced CT images.
Exclusion criteria comprised: (1) the presence of prior or
concurrent malignancies, (2) presence of imaging artifacts
complicating cancer segmentation, and (3) absence of clinical
data. Patient stratification into training (n = 94) and testing (n
= 39) cohorts was based on treatment time, specifically from
February 2018 to April 2020 and fromMay 2020 to June 2022.

2.2 CT image acquisition and LN status
Patients underwent multiple CT scans using a Somatom Def-
inition 40 (Siemens Medical Systems) with parameters: 120
kV, 200 effective mAs, 64 × 0.6 mm beam collimation, 512
× 512 matrix, 0.8 pitch, and 0.5 s gantry rotation. Post non-
enhanced scanning, dynamic contrast-enhanced scans were
done at 25–30 s (arterial phase) and 60 s (portal phase) fol-
lowing 1.0 mL/kg iodinated contrast (Ultravist 370, Bayer
Schering Pharma, Berlin-Wedding, Germany) injection at 2.0
mL/s into the antecubital vein. Two experienced urological
radiologists (10 and 15 years) reviewed the CT images, noting
T staging and LN sizes. Pelvic LNs over 8 mm and abdominal
LNs over 10 mmwere deemed clinically LN-positive [1]. Dis-
agreements were resolved through consultation. Pathological
staging used the 2009 tumor node metastasis (TNM) system
[4], and grading followed the 2004 World Health Organization
classification [5].

2.3 Feature selection and radiomics
signature building

We outlined the region of interest (ROI) of the whole tumor on
the arterial-phase CT imaging’s largest cross-section. The seg-
mented tumor ROI files were then transferred to Analysis Kit
software (V3.0.2., Workbench2014, GE Healthcare, Chicago,
IL, USA) for radiomics evaluation. The py-Radiomics Library
(version 2.1.1) within AKwas utilized to extract 960 radiomics
features. To normalize these features for comparability, they
were standardized, ensuring consistent evaluation across dif-
ferent units and scales. Feature dimensionality reduction was
conducted using analysis of variance (ANOVA) and Mann-
Whitney U-test (MW), complemented by correlation assess-
ments using a Spearman coefficient of 0.9. The least absolute
shrinkage and selection operator (LASSO) was then applied to
pinpoint the most predictive features. These features, weighed
by their coefficients, were linearly combined to form a ra-
diomics score (Rad-score) for each patient, indicative of their
risk of lymph nodemetastasis. The radiomics signature’s accu-
racy was evaluated using the area under the receiver operating
characteristic (ROC) curve in both sets.

2.4 Establishment of the radiomics
nomogram

Using the training set, each potential predictor (i.e., age, tu-
mor size, tumor region, CT-reported number of tumors, CT-
reported LN status, and Rad-score) was analyzed for its corre-
lation with pathological lymph node metastasis using univari-
ate logistic regression. Variables significant in this analysis (p
< 0.05) were considered for the multivariate logistic model.
The model’s variable selection was further refined using boot-
strap resampling (500 iterations). Predictors consistently sig-
nificant in over 50% of these iterations were included in the
final model. This model’s performance was represented as a
nomogram and evaluated for discrimination and fit using ROC
techniques and the Hosmer-Lemeshow test. Additionally, a
calibration curve was used to compare actual versus predicted
LNM rates. These evaluation methods were applied to both the
training and testing sets.

2.5 Statistical analysis

Statistical analyses were performed using various programs:
MedCalc (V.11.2, 2011 MedCalc Software bvba, Mariakerke,
Belgium), SPSS version 22.0 (IBM, Armonk, NY, USA),
GraphPad (V3.10, GraphPad Software, San Diego, CA, USA),
and R software (version 3.4.1; http://www.r-project.org/). The
normality of variable distributions was evaluated using the
Kolmogorov-Smirnov test. Depending on their distribution,
continuous variables were analyzed using either two-sample
t-tests or Mann-Whitney U tests, while categorical variables
were assessed with Chi-square tests. All statistical tests were
two-sided with a significance threshold set at p < 0.05.

3. Results

http://www.r-project.org/
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3.1 Baseline characteristics of the study
cohort

The patient characteristics in both sets are summarized in
Tables 1 and 2, respectively. Notably, a significant difference
in CT-reported T stage was observed between patients with
and without LNM in both the training and testing sets (p
< 0.05). However, there were no significant differences in
other variables (p > 0.05). In the training set, patients with
pathological lymph node (pN) 1–3 constituted 37.23% (35/94),
while in the testing set, this percentage was 35.89% (14/39).
Importantly, among all patients, 48.98% (24/49) were not
initially reported to have LNM but were found to have patho-
logical LN metastases upon further examination. Conversely,
24.06% (32/133) of patients were initially reported to have LN
metastases but did not exhibit LN metastases on pathological
evaluation.

TABLE 1. Clinical characteristics of the training and
testing sets.

Variable
Training set
(n = 94)

Testing set
(n = 39) p value

n % n %
Age 64.5 ± 10.8 64.3 ± 10.6 0.913
Tumor size

<3 cm 49 52.1 23 59.0
0.596

>3 cm 45 47.9 16 41.0
Region

Left 66 70.2 28 71.8
0.855

Right 28 29.8 11 28.2
CT-reported number of tumors

Single 63 67.0 22 56.4
0.336

Multiple 31 33.0 17 43.6
CT-reported T stage

cT0–2 48 51.1 19 48.7
0.955

cT3–4 46 48.9 20 51.3
CT-reported LN status

cN0 41 43.6 13 33.3
0.365

cN1–3 53 56.4 26 66.7
CT: computed tomography; LN: lymph node.

3.2 Construction and validation of
radiomics signatures

Based on the ROI area on the arterial-phase CT scans 960
texture features were retrieved. After conducting single-factor
ANOVA and Mann-Whitney tests, 265 of the initial 960 fea-
tures were identified as potential features for further analysis.
Subsequently, correlation test identified 68 features for further
consideration. To establish the final composition of the most
valuable predictive feature set, a LASSO logistic regression
model was used, which identified eight valuable predictive
features (Fig. 1). The radiomics signature, based on these eight
features, demonstrated significantly different radiomics scores

between the pN0 (−0.439± 1.511) and pN1–3 (1.159± 0.689)
patient subgroups in the training set (p < 0.05), which was
validated using the testing set (pN0 (−0.07 ± 1.298), pN1–3
(1.15 ± 0.761), p < 0.05). The radiomics signature showed
promising predictive capability, achieving an area under the
curve (AUC) of 0.836 (95% confidence interval (CI), 0.748–
0.924) (sensitivity and specificity: 0.915 and 0.657) in the
training set and 0.817 (95% CI, 0.666–0.969) (sensitivity and
specificity: 0.760 and 0.857) in the testing set.

3.3 Radiomics model performance
Univariate analyses revealed that CT-reported T stage and
LN status, along with our derived radiomics signature, were
associated with LNM in RPUC (Table 3). Subsequently, a
radiomics model was constructed using multivariate logistic
regression, incorporating these two predictors. The Hosmer-
Lemeshow test confirmed the absence of overfitting in the
model (p > 0.05). The calibration curve showed the model’s
predictive performance closely aligned with actual LNM sta-
tus. It reached a predictive accuracy of 0.849 (95% CI, 0.761–
0.915) in the training set, as per its AUC. In the testing set,
the model’s AUC was 0.851 (95% CI, 0.701–0.945), with
sensitivities of 0.881 and 0.920, and specificities of 0.743 and
0.714 in the training and testing sets, respectively (Fig. 2).

3.4 Clinical evaluation of radiomics model
To assess prediction performance, we generated ROC curves
using the 133 patient data, comparing the radiomics model,
radiomics signature, and conventional CT-assessed T stage
(Fig. 3A). The AUCs for the radiomics model, radiomics sig-
nature, and conventional CT-assessed T stage were 0.848 (95%
CI, 0.776–0.904), 0.829 (95% CI, 0.754–0.889), and 0.634
(95% CI, 0.546–0.716), respectively. The radiomics model
demonstrated superior predictive ability compared to either
the radiomics signature or the CT-reported LN status alone
in predicting pathological LN metastases. Furthermore, the
radiomics model exhibited robust discriminatory performance
within the cN0 subgroup, achieving an AUC of 0.903 (95%
CI, 0.792–0.967) (Fig. 3B). Risk scores generated from the
model allowed for classifying patients into low-risk and high-
risk groups using optimal cut-off values set at 0.63887, iden-
tified through the maximum Youden index in the training set.
Analysis revealed that both in the overall patient cohort and
the cN0 subgroup, the high-risk group showed a significantly
higher probability of LNM compared to the low-risk group
(Fig. 3C,D).

4. Discussion

The results of this study highlight the effectiveness of the
radiomics label marker, constructed based on the radiomic
characteristics of the primary lesion in RPUC, in accurately
determining the status of LNM. Importantly, the incorporation
of the T-grade feature from clinical CT reports substantially
improves predictive performance, emphasizing the clinical
utility of radiomics characteristics, especially when combined
with clinical tumor T staging, as a convenient and rapid diag-
nostic tool to estimate LNM in male RPUC patients.
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TABLE 2. Clinical characteristics of the training and testing sets for pathological lymph node stage.

Variable
Training set
(n = 94)

Testing set
(n = 39)

Pathologic T stage pN1–3
(n = 35)

pN0
(n = 59) p pN1–3

(n = 14)
pN0

(n = 25) p

n (%) n (%) n (%) n (%)

Age 62.4 ± 11.1 65.4 ± 10.2 0.192 63.6 ± 13.6 65.0 ± 9.2 0.695

Tumor size

<3 cm 18 (51.4) 31 (52.5)
0.741

8 (57.1) 15 (60.0)
0.862

>3 cm 17 (48.6) 28 (47.5) 6 (42.9) 10 (40.0)

Region

Left 27 (77.1) 39 (66.1)
0.369

10 (71.4) 18 (72.0)
0.970

Right 8 (22.9) 20 (33.9) 4 (28.6) 7 (28.0)

CT-reported number of tumors

Single 22 (62.9) 41 (69.5)
0.664

8 (57.1) 14 (56.0)
0.945

Multiple 13 (37.1) 18 (30.5) 6 (42.9) 11 (44.0)

CT-reported T stage

cT0–2 23 (65.7) 25 (42.4)
0.048

10 (71.4) 9 (36.0)
0.074

cT3–4 12 (34.3) 34 (57.6) 4 (28.6) 16 (64.0)

CT-reported LN status

cN0 22 (62.9) 41 (69.5)
0.664

2 (14.3) 11 (44.0)
0.125

cN1–3 13 (37.1) 18 (30.5) 12 (85.7) 14 (56.0)

CT: computed tomography; LN: lymph node; pN: pathological lymph node.

FIGURE 1. Radiomics features identifed by the LASSO logistic regression method. (A) Radiomics feature selection using
LASSO logistic regression. (B) LASSO coefficient profiles of the 68 texture features. (C) A vertical line was drawn at the value
selected using 10-fold cross-validation in the log (λ) sequence, indicating ten coefficients with non-zero values.
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TABLE 3. Logistic regression analyses of predicting pathological lymph node metastases.

Variable Univariate logistic regression Multivariate logistic regression

OR (95% CI) p OR (95% CI) p

Age (<60 yr vs. >60 yr) 0.470 (0.144–1.536) 0.211 NA NA

Tumor size (<3 cm vs. >3 cm) 0.672 (0.210–2.149) 0.502 NA NA

CT-reported number of tumors (single vs. multiple) 1.920 (0.526–7.002) 0.323 NA NA

CT-reported T stage (cT0–2 vs. cT3–4) 0.261 (0.072–0.947) 0.041 0.058 (0.008–0.396) 0.004

CT-reported LN status (cN0–cN1–3) 0.132 (0.028–0.621) 0.010 NA NA

The radiomics signature (per 0.1 increase) 0.130 (0.044–0.385) <0.001 0.085 (0.013–0.546) 0.009

Note: NA, not available. These variables were eliminated in the multivariate logistic regression model, so the OR and p values
were not available. CT: computed tomography; LN: lymph node; CI: confidence interval; OR: odds ratio.

FIGURE 2. The ROC curves and calibration curves of the radiomics model. (A) The ROC curve of the radiomics model
in the training group. (B) The ROC curve of the radiomics model in the testing group. (C) The calibration curve of the radiomics
model in the training group. (D) The calibration curve of the radiomics model in the testing group. AUC: area under the curve.
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FIGURE 3. Clinical evaluation of radiomics model in all patients and cN0 subgroup. (A) The ROC curves of on all 133
patients were plotted for the radiomics model, radiomics signature, and conventional CT-assessed T stage. (B) The AUC of the
model for predicting pathological lymph node metastases in the cN0 subgroup. (C) The model’s efficacy in identifying LNM in
the high-risk group and low-risk group in all patients. (D) The model’s efficacy in identifying LNM in the high-risk group and
low-risk group in cN0 subgroup. AUC: area under the curve; CT: computed tomography; pN: pathological lymph node.

LNM significantly influences treatment decisions, progno-
sis assessment and the prognosis of RPUC [16]. Effective
predictive models are necessary for guiding treatment choices
and improving patient outcomes. For instance, in surgical
procedures, predictive outcomes can inform decisions regard-
ing LN dissection and postoperative chemotherapy, thereby
reducing surgical risks and enhancing survival rates. In re-
gards to radiotherapy and chemotherapy, adjusting treatment
regimens and doses based on predictive outcomes can optimize
treatment effectiveness while minimizing adverse effects. The
results of this study demonstrate that the developed radiomics
model, which integrates tumor radiomics markers with clinical
tumor T staging, effectively predicts LNM in RPUC, which
has substantial implications for advancing the application of

radiomics in both RPUC research and clinical practice. Tumor
T stage, a crucial component of the constructed model, has
been established as significantly associated with RPUC patient
survival [17]. In line with the findings of Seisen et al. [18] and
Cha et al. [19], a more advanced T stage was identified as a
promising risk factor linked to patient survival. The present
study aligns with this conclusion, as only T stage was incorpo-
rated in the radiomics model construction, further highlighting
the potential association between LNM and patient prognosis.
However, it is essential to acknowledge that the clinical T
stage may not consistently serve as an independent predictor
of RPUC pathological characteristics in similar studies [20],
possibly due to variations in the sizes of the study populations.
Thus, future investigations should consider larger sample sizes
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to validate the findings of this study.
In our study, we used the constructed radiomics model to

predict the risk for all male patients, and based on these risk
data, patients were categorized into either high-risk or low-
risk groups. Notably, the study revealed a significantly higher
detection rate of pathological LN-positive patients in the high-
risk group compared to the low-risk group, which underscores
the clinical superiority of the radiomics model over serological
testing as a prognostic tool for RPUC [21]. Furthermore, our
use ofmodels to predict outcomes in patients initially classified
as having negative LNs based on clinical CT reports not only
exhibited good diagnostic accuracy but also demonstrated the
ability to differentiate between high and low risk, suggesting
that the radiomics model may serve as a reliable non-invasive
biomarker for accurately diagnosing the absence of LNM in
RPUC patients through clinical imaging. While urine cytology
has been considered a non-invasive marker for RPUC progno-
sis, its accuracy is significantly limited by a high false-negative
rate, which can reach up to 50 percent in low-grade tumors
[22].
However, it is important to acknowledge several limitations

in this study. Firstly, as a cross-sectional study conducted
at only one center which had few cases analyzed. Future
studies should prioritize larger data collection, incorporating
multi-center datasets to enhance the accuracy and reliability
of predictive models. Secondly, this study relied on a single
image feature report, lacking the integration of diverse imaging
and clinical data. Subsequent research should aim to construct
a more intricate and comprehensive prediction model, thereby
improving predictive performance and expanding the applica-
tion scope. Lastly, this study did not investigate the correlation
of the factors with LNM in RPUC and associated radiomics
features. Such an investigation could provide valuable insights
into the explanatory and biological significance of predictive
models.

5. Conclusions

In summary, our proposed model constructed for estimating
RPUC LNM shows promising potential for clinical applica-
tion. However, further research is warranted to validate our
findings, which could help radiomics evolve into a crucial tool
for diagnosing and treating RPUC, providing male patients
with more personalized, accurate and effective medical ser-
vices.
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