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Abstract
Prostate cancer is a prevalent malignancy and leading cause ofmalemortality worldwide,
thus highlighting the need for precision medicine and a combined single-cell and bulk
transcriptome-based diagnostic assessment model. First, we used single-cell RNA
sequencing data and the high dimensional weighted gene co-expression network analysis
(hdWGCNA)method to identify specific cell types in tumor tissues. We identified higher
proportions of epithelial cells and increased intra-tissue heterogeneity in prostate cancer;
most of these epithelial cells were closely associated with metal ion transport functions.
Lasso regression identified diagnostic-related genes that were incorporated into a sample
evaluation model using multiple machine learning algorithms. Thus, we established
a diagnostic model that combined immune cells, diagnostic genes and deep learning
methods. The Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) models exhibited the highest diagnostic efficacy for Lasso genes. Neural
network models, combining immune microenvironment assessment and diagnostic gene
expression, also showed good diagnostic efficacy. Our study highlights the potential
of machine learning and convolutional neural networks for the diagnostic assessment
of prostate cancer, thus providing support for personalized treatment decisions, and
identifying areas for future research.
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1. Introduction

Over recent years, the incidence of prostate cancer has shown
an increasing trend and has gradually become an important
disease that threatens the health of men [1]. Diagnosis serves
as a crucial indicator for determining patient treatment and
management strategies, and plays a pivotal role in improving
personalized medicine and patient survival rates. However,
traditional methods for prostate cancer diagnosis have certain
limitations as they rely solely on clinical and pathological
features, as well as conventional statistical models, without
comprehensive consideration of multivariable and complex
relationships [2, 3].
Over recent years, the rapid development of artificial in-

telligence techniques, including machine learning and deep
learning, has provided new opportunities and challenges for the
diagnosis of prostate cancer [4–6]. Machine learning enables
learning from large-scale data, while deep learning, building
upon this foundation, effectively handles multidimensional
arrays, such as convolutional neural network algorithms [7].
These technologies have achieved significant advancements in
various fields. However, to date, their application in the field

of prostate cancer diagnosis remains unexplored [8].

Metal ions are key components of many biochemical pro-
cesses within cells. Cells regulate the influx and efflux ofmetal
ions through transport proteins, ion channels, and ion pumps to
maintain normal ion levels and homeostasis [9]. The transport
of metal ions plays important roles in cellular physiology
and disease. Previous research has shown that cancer cells
may overexpress specific metal ion transport proteins, leading
to the accumulation of these metal ions within cells, thus
influencing cell signaling and metabolism [10]. In addition,
abnormal metal ion transport may disrupt DNA damage repair
mechanisms, thereby promoting the formation and progression
of tumors. However, the potential mechanisms of metal ion
transport associated with the occurrence and development of
prostate cancer have yet to be elucidated and require further
research and exploration [11].

The aim of this study was to explore a machine learning and
convolutional neural network-based approach for the diagnosis
of prostate cancer and evaluate its feasibility and efficacy in
clinical practice [12]. We utilized a single-cell RNA sequenc-
ing dataset of prostate cancer tissues to identify specific cell
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types within tumor tissues [13]. In addition, we used the high
dimensional weighted gene co-expression network analysis
(hdWGCNA) method to calculate gene modules associated
with the identified cells [14]. By integrating conventional tran-
scriptome sequencing data and utilizing Lasso regression, we
identified diagnostic-related genes and constructed a sample
evaluation model using multiple machine learning algorithms
[15]. Furthermore, by evaluating the immune microenviron-
ment of the samples, a diagnostic model integrating immune
cells and genes was developed by deep learning methods.
The specific relationship between our diagnostic model and
patient prognosis was determined by Cox regression [16–
18]. By performing metascape gene enrichment, we were
able to identify this class of cells as being associated with
transmembrane transport, particularly the transport of metal
ions. By comparing the performance differences between
our model and traditional methods, we aimed to demonstrate
the advantages of machine learning and convolutional neural
networks in the diagnosis of prostate cancer and provide robust
support for future personalized treatment decisions.

2. Materials and methods

2.1 Data sources
The scRNA-seq dataset GSE185344 [19] (including
samples of 7 primary tumors undergoing prostatectomy)
and GSE117403 [20] (including 16 samples of normal
human prostate), were acquired from the Gene Expression
Omnibus (GEO); these databases are publicly available
and can be accessed through the GEO website
(https://www.ncbi.nlm.nih.gov/geo/). To complement
our analysis, we obtained bulk RNA sequencing data from
prostate adenocarcinoma (PRAD) from the Cancer Genome
Atlas Program (TCGA, https://portal.gdc.cancer.gov/)
consisting of 55 normal samples and 496 tumor samples. In
addition, we obtained array data that was used to build the
Cox regression model.

2.2 Data processing
The scRNA-seq data underwent preprocessing using the Seu-
rat package (v4.2.1) [21] in the R programming language
to ensure the quality of subsequent analyses. Initially, we
excluded cells exhibiting mitochondrial gene expression ex-
ceeding 40%, those with a low number of detected genes
(<200), and those with an excessive number of detected genes
(>2500). The Harmony (v0.1.1) package [22] was used to
remove batch effects between merged samples. The top 2000
highly variable genes were selected for principal component
analysis (PCA). Subsequently, the first 15 principal compo-
nents (PCs) were chosen for further analysis. Then, the “Find-
Clusters” function was employed to cluster and visualize the
PCs using a Uniform Manifold Approximation and Projection
(UMAP) approach. Next, the “FindAllMarkers” function was
utilized to identify differentially expressed genes within each
cluster. The “DoHeatmap” function was used to plot a heatmap
for selected genes. Cell annotation was performed by the “sin-
gleR” (2.0.0v) package [23], which compares gene expression
profiles in the reference dataset to obtain a predicted cell type

label for each cell in the single-cell sequencing dataset based
on the closest match found in the reference dataset.

2.3 Intercellular communication analysis
and pseudotime analysis
Intercellular communication analysis was performed by the
CellChat (v1.6.1) package [24], an R package that was de-
veloped to analyze cell-to-cell interactions in single-cell tran-
scriptome data. This software clusters cells, infers interac-
tions between different units, and constructs cell-to-cell com-
munication networks. Using Gene Set Enrichment Analysis
(GSEA), this software annotates functional modules for each
clustering module. CellChat is a reliable tool for studying
cell interactions and the mechanisms of complex diseases. We
chose “Secreted Signaling pathway” to explain the potential
mechanism. To perform pseudotime analysis, we used the
monocle (v2.26.0) package [25] in R to construct a cell order-
ing trajectory, reduce the dimensions of the gene expression
data, create a minimum spanning tree, order cells along the
trajectory, and conduct differential gene expression analysis.

2.4 High-dimensional weighted
co-expression network analysis (hdWGCNA)
For scRNA-seq data, we applied the hdWGCNA (v0.1.1.9010)
package to cluster genes [26]. We filtered out genes expressed
in less than 5% of cells and used the remaining genes to
construct the hdWGNCA object. The co-expression network
was constructed using a soft power value of 9 for subsequent
analysis. Module eigengenes (MEs) provided a representation
of the gene expression profile within each co-expression mod-
ule. We associated each of the MEs with a Seurat cluster in a
dotplot to identify the connection between them. The top 50
genes with the highest correlation in the module were selected
for downstream analysis.

2.5 Gene enrichment
To investigate the biological functions and pathways
associated with common genes, we conducted Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses using Metascape (https:
//metascape.org/gp/index.html#/main/step1), a
web-based portal that provides a comprehensive resource to
annotate and analyze gene lists for experimental biologists
[27]. The screening conditions were set to a minimum overlap
of 3 and a minimum enrichment of 1.5. Filter pathways with
p-values < 0.01 were used to plot bar charts and network
interactions.

2.6 Lasso regression and machine learning
Lasso regression is used to perform variable selection by
shrinking the regression coefficients associated with the least
important variables to zero, thus resulting in a parsimonious
model. This strategy can enhance our understanding of
complex biological processes and disease mechanisms. To
construct a preliminary prediction model, we used bulk
sequencing data from the TCGA-PRAD and conducted
two-step analysis using the glmnet package. First, we used
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logistic regression analysis to identify genes with statistical
significance (p < 0.05). Then, we applied Lasso regression to
further determine the most valuable variables. The cv.glmnet
function was then utilized to identify highly valuable genes.

2.7 Machine learning
To further refine ourmodel, we usedmachine learningmethods
to improve the predictive accuracy. The mlr3verse package
was utilized to construct various classifiers, including Linear
Discriminant Analysis (LDA), Logistic Regression (Log Reg),
RandomForest, Support VectorMachine (SVM), Naive Bayes,
K-nearest neighbor (KNN), rPart, Random Forest, among oth-
ers. We used a 5-fold cross-validation method to partition the
dataset. Finally, receiver operating characteristic (ROC) curve
analysis was applied to evaluate the diagnostic accuracy and
optimal threshold value of these models. For each model,
we also calculated the area under the ROC curve (AUC),
sensitivity and specificity.

2.8 Geneset immune infiltration evaluation
To analyze immune-typing, we conducted ssGSEA analysis
using the GSVA package (v1.46.0) [28] to determine the het-
erogeneity of Lasso genes identified between tumor and nor-
mal tissues at the bulk level. Subsequently, we utilized the
IOBR package (v0.99.0) [29] to calculate the correlation be-
tween Lasso genes and immune cells. The IOBR package
provides a framework that allows us to calculate the correlation
between Lasso genes and immune cells [29]. By integrating
results, it is possible to gain insights into the immune-typing
of tumors and normal tissues and evaluate the role of Lasso
genes in the immune response. We integrated the results by
calculating the gene-set score using methods such as PCA, z-
score, and ssGSEA; in addition, MCPcounter was applied to
calculate detailed taxonomic scores for epidemic cell taxa.

2.9 Non-negative matrix factorization
To construct disease subtypes using the MEs module gene,
we used the NMF package (v0.25) [30] in R to perform non-
negative matrix factorization. This strategy can improve the
resolution of clustering or trajectory analysis in single-cell
transcriptomes, thereby accelerating studies of complex bio-
logical processes and disease mechanisms. Firstly, we re-
processed the gene expression data to ensure accurate results.
Then, the “NMF” function was used to compute the NMF with
specific settings (rank: 5; nrun: 100).

2.10 Deep learning
Finally, deep learning was utilized to develop a novel diag-
nostic prediction model that integrated the immune microen-
vironment and Lasso gene expression levels to predict the
prognosis of patients at multiple levels. The Keras package
(v2.11.0.9000) [31] was utilized to integrate patient informa-
tion, Lasso gene expression levels, deconvolutionMCPcounter
scores, and immune cell correlations into multi-dimensional
arrays, which were then used to train and test the deep learning
model utilizing convolution algorithms.

3. Results

3.1 Annotation and identification of
subgroups in scRNA-seq data
Following quality control, a total of 35,673 cells were included
in this study fromGSE185344 and GSE117403 (Fig. 1A). Har-
monywas utilized to remove batch effects and integrate the two
cell datasets. PCA analysis (Fig. 1B) showed that the sample
heterogeneity caused by different batches was essentially elim-
inated. Seurat was utilized for further dimensionality reduction
and clustering, and singleR was utilized to identify specific
cell types and proportions, including T cells, epithelial cells,
monocytes, smooth muscle cells, endothelial cells, natural
killer cells (NK cells), common-myeloid progenitors (CMP),
chondrocytes, macrophages, and B cells (Fig. 1C,D). Analysis
showed that the proportion of epithelial cells was significantly
increased in prostate cancer samples. The identified cell types
and their expression levels were used for differential analysis
and heat map visualization (Fig. 1E).
Furthermore, to investigate the changes in epithelial cells,

Seurat was used to isolate epithelial cells and perform sec-
ondary dimensionality reduction clustering. In the second
clustering, 19 epithelial cell-related clusters were identified,
and their proportions were calculated (Fig. 2A,B), as well as
their proportions in healthy and cancerous tissues (Fig. 2C,D).
Clusters 0, 1, 2, 4, 6, 7, 9, 10 and 18 were exclusive to prostate
cancer tissue.

3.2 Intercellular communication and
pseudotime analysis
Intercellular communication refers to the process of informa-
tion transmission between cells and between cells and the
environment and the integration of signals in the cell; this plays
a key role inmaintaining the normal function and physiological
processes of multicellular organisms [32, 33]. Intracellular
communication is able to regulate the growth, differentiation
and function of cells to guarantee the correct development and
normal functionality of tissues and organs [24]. Intercellular
communication abnormalities are closely related to the oc-
currence and progression of a variety of important diseases
[34]. Therefore, it is of great significance to understand
the mechanism and regulation of intercellular communication
to reveal the molecular mechanisms responsible for disease
occurrence and develop new therapeutic methods. To identify
the interactions between these tumor-specific epithelial cell
clusters and other cells, we utilized the Intercellular Com-
munication Analysis method to identify ligand-receptor pairs
between these cell clusters. Fig. 3A shows the total number and
strength of interactions between these epithelial cells and other
cells. We found that tumor-specific epithelial cells had a strong
effect on endothelial cells, monocytes, and B cells. Fig. 3B,C
display the main ligand-receptor pairs when epithelial cells
were used as the source and target, respectively. When epithe-
lial cells were used as the target, there were few statistically
significant ligand-receptor pairs (Midkine (MDK)-Nucleolin
(NCL), α-Methyl-p-tyrosine (AMPT)-Insulin receptor (INSR),
Pleiotrophin (PTN)-NCL). When these were used as the lig-
and, we found that they had higher levels of activity. The
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FIGURE 1. Overview of single-cell RNA sequencing analysis. (A) Flowchart of data quality control and analysis. (B)
Principal component analysis (PCA) plot showing batch effects removal. (C) t-SNE plot showing cell clustering by cell type. (D)
Cell proportions of different subpopulations of cells in PRAD tissue and normal tissue. (E) Differential gene expression analysis
and heatmap visualization of specific cell types in prostate cancer samples compared to healthy tissues. NK cells: natural killer
cells; CMP: common-myeloid progenitors; PRAD: prostate cancer; IL70: Interleukin 70; CCL5: C-C Motif Chemokine Ligand
5;MSMB: Microseminoprotein Beta; ACPP: Prostatic Acid Phosphatase; IL1B: Interleukin1B; LYZ: Lysozyme; RGS5: Regulator
Of G Protein Signaling 5; TAGLN : Transgelin; IFI27: Interferon Alpha Inducible Protein 27; SPARCL1: SPARC Like 1; IGF1:
Insulin Like Growth Factor 1; TPSAB1: Tryptase Alpha/Beta 1; TPSB2: Tryptase Beta 2; IGLV2-14: Immunoglobulin Lambda
Variable 2-14; CD79A: CD79a Molecule.

relationship between macrophage migration inhibitory factor
(MIF) andMDK as the ligand-receptor pair played a dominant
role. Most ligand-receptor pairs were present in both tumor and
healthy cells, but overall, the communication effect of tumor
cells stronger (Fig. 3D).

Next, pseudotime analysis was used to construct the devel-
opmental trajectory of all cells. Six developmental branching
points were identified, as shown in Fig. 4A, which displays
the relationship between Seurat clusters and the trajectory.
Some prostate cancer-specific epithelial cell clusters, such as
cluster 0, showed a specific distribution along the trajectory.
Pseudotime analysis was then used to analyze the developmen-
tal direction of the trajectory (Fig. 4B). The Beam algorithm
was used to cluster pseudotime analysis results and generate
differential genes before and after developmental branching
points (Fig. 4C).

3.3 hdWGCNA identification of
tumor-associated epithelial clusters and
functional enrichment

Next, the hdWGCNA algorithm was used to analyze gene
differential expression in the epithelial cell clusters. The
appropriate soft power for a weighted average co-expression
network was selected to establish the co-expression network
(Fig. 5A,B) in order to reflect the inherent properties of the
data. Eight module Eigengenes (MEs) were identified, except
for the gray module (brown, blue, red, yellow, green, black,
turquoise, pink), and their interrelations are shown in Fig. 5C.
Notably, the pink module had a significant association with the
turquoise module, while the green module was associated with
the black module. The distribution of the 8 MEs in epithelial
cells is demonstrated in Fig. 5D, and the expression of MEs in
each Seurat cluster is quantified in Fig. 5E. The pink, turquoise,
black, green and yellow modules had a higher proportion of
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FIGURE 2. Epithelial cell-related clustering analysis. (A) t-SNE plot showing the clustering of epithelial cells. (B)
Secondary dimensionality reduction clustering of epithelial cells showing 19 epithelial cell-related clusters. (C) Comparison of
the proportion of epithelial cell-related clusters between healthy and cancerous tissues. (D) Proportions of epithelial cell-related
clusters in healthy and PRAD tissues. NK cells: natural killer cells; CMP: common-myeloid progenitors; PRAD: prostate cancer.

gene expression and average expression level in the tumor-
specific epithelial cell clusters. The top 50 genes with the
highest correlation per module were selected (Supplementary
Table 1).
To clarify the functionality of the genes identified in each

module, we used the Metascape database for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) as well as GO func-
tional enrichment (Fig. 6A,B). Analysis showed that the genes
identified by hdWGCNAwere involved in monoatomic cation
transport, copper homeostasis, transition metal ion transport
and other processes of metal ion transport across membranes.
In addition to this, we identified close links with fatty acid
metabolism, cholesterol metabolism and cellular respiration.
Other genes were involved in fatty acid metabolism, choles-
terol metabolism, cellular respiration and other physiological
processes.

3.4 The use of machine learning to identify
potential diagnostic biomarkers for
prostate cancer
Logistic regression and Least Absolute Shrinkage and
Selection Operator (LASSO) regression algorithms were
applied to screen for candidate genes, as demonstrated
in Fig. 7A,B. LASSO regression identified 33 potential
biomarkers (Supplementary Table 2). Machine learning
based on the mlr3vers package was performed, and the results
are presented in Fig. 7C. The Linear Discriminant Analysis

(LDA), Logistic Regression (Log Reg), Random Forest,
and Support Vector Machine (SVM) models exhibited high
sensitivity in the training set. In the testing set, the LDA and
SVM models demonstrated the highest diagnostic sensitivity
and can be used effectively for the diagnosis of prostate cancer
(Fig. 7D,E).

3.5 Immune infiltration assessment of
prostate cancer samples
The results of single-sample Gene Set Enrichment Analysis
(ssGSEA) assessment for prostate cancer samples are shown
in Fig. 8A, with LASSO gene scores significantly higher in
tumor tissues than in normal tissues. Next, Non-Negative
Matrix Factorization (NMF) clustering was performed based
on the expression profile of Lasso genes, and the NMF rank
survey plot is presented in Fig. 8B, with 5 selected as the
appropriate NMF clustering parameter. Ultimately, we identi-
fied 5 subtypes of prostate cancer tumor cells, as demonstrated
in Fig. 8C, along with their relationships with immune cells.
The correlation between immune cells and Lasso genes is
illustrated in Fig. 8D. We found that the expression levels of
Aryl hydrocarbon receptor (AHR) were positively correlated
with fibroblasts (r > 0.5, p < 0.001), endothelial cells (r >
0.5, p < 0.001), neutrophils (r > 0.5, p < 0.001), myeloid
dendritic cells (r > 0.5, p < 0.001), monocytic lineage (r >
0.5, p < 0.001), cytotoxic lymphocytes (r > 0.5, p < 0.001),
and T cells (r > 0.5, p < 0.001). The expression levels
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FIGURE 3. Intercellular communication analysis of tumor-specific epithelial cells. (A) Network diagram showing the
total number and strength of interactions between epithelial cells and surrounding cells. (B,C) Heatmaps of ligand-receptor
pairs when epithelial cells were used as the source (B) and target (C). (D) Comparison of the proportion of ligand-receptor pairs
between healthy and cancerous tissues. Most ligand-receptor pairs were present in both tumor and healthy cells; however, the
communication effect of tumor cells was stronger. NK cells: natural killer cells, CMP: common-myeloid progenitors; MIF:
migration inhibitory factor; MK: Mevalonate kinase; GDF: Growth Differentiation Factor; MDK: Midkine; PTN : Pleiotrophin;
CXCL: C-X-C Motif Chemokine Ligand; VEGF: Vascular Endothelial Growth Factor; SEMA3: Semaphorin 3; CCL: C-C
Motif Chemokine Ligand, GAS: Growth Arrest-specific Transcripts; ANGPT : Angiopoietin 2; BAFF: B-Cell-Activating Factor,
CALCR: Calcitonin Receptor; EDN : Endothelin; PDGF: Platelet Derived Growth Factor.
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FIGURE 4. Pseudotime analysis of developmental trajectory. (A) Visualization of the developmental trajectory of all
cells. (B) Plot showing the developmental direction of the trajectory, generated using pseudotime analysis. (C) Differential gene
expression analysis of genes before and after developmental branching points, as generated by the the BEAM algorithm.

of serine/threonine kinase 38 like (STK38L) were positively
correlated with fibroblasts (r > 0.5, p < 0.001), endothelial
cells (r > 0.5, p < 0.001), neutrophils (r > 0.5, p < 0.001),
monocytic lineage (r > 0.5, p < 0.001), NK cells (r > 0.25,
p < 0.001), cytotoxic lymphocytes (r > 0.25, p < 0.001),
and T cells (r > 0.25, p < 0.001). The expression levels
of transcription elongation factor A like 1 (TCEAL1) were
positively correlated with fibroblasts (r > 0.5, p < 0.001),
endothelial cells (r > 0.5, p < 0.001), neutrophils (r > 0.25, p
< 0.001), monocytic lineage (r > 0.25, p < 0.001), cytotoxic
lymphocytes (r > 0.25, p < 0.001), CD8 T cells (r > 0.25, p
< 0.001), and T cells (r > 0.25, p < 0.001). Fig. 8E shows a
comparison of the content of 10 types of immune cells in each
subtype, among which T cells, monocytic lineage, and CD8+
T cells exhibited the most significant statistical differences in
proportion.

3.6 Construction of a convolutional neural
network model with immune scores and
gene expression
The Keras package was used for preliminary processing. The
calculated ratio of immune score and gene expression was
used as the learning data for the neural network model, after
constructing a high-dimensional array for deep learning. The
results of deep learning are presented in Fig. 8F. In the training
set, the ROC curve had an AUC of 0.843; this compared to an
AUC of 0.834 in the testing set, thus demonstrating the strong
diagnostic performance of the deep learning model (Fig. 8G).

4. Discussion

Prostate cancer is a highly prevalent form of cancer, and the di-
agnosis and treatment of this condition represents a major chal-
lenge to the medical community. Single-cell RNA sequencing
technology has emerged as an efficient tool for investigating
themolecularmechanisms underlying the formation and devel-
opment of cancer [35, 36]. The rapid development of single-
cell sequencing technology has provided a new approach for
investigating the prostate cancer [37]. This method previ-
ously demonstrated tumor heterogeneity in prostate cancer,
and comprehensive analysis of the tumor microenvironment
demonstrated the complex cell composition of prostate cancer,
explored potential interactions between tumor cells and other
cells, and provided a deeper understanding of the composition
of the tumor microenvironment [19]. This has provided more
reliable data for clinical treatment and provided a theoretical
foundation for further research, and provided guidance for
precise personalized treatment [38].
In the present study, we utilized single-cell RNA sequencing

to investigate changes in specific cell types in samples of
prostate cancer, including T cells, epithelial cells, monocytes,
smooth muscle cells, endothelial cells, NK cells, CMP, chon-
drocytes, macrophages, and B cells. We used advanced ana-
lytical methods, including Harmony and Seurat, to eliminate
batch effects, cluster cells, and identify unique cell types. Our
analysis showed that the proportion of epithelial cells were
significantly increased in samples of prostate cancer. Then, we
performed secondary clustering analysis on epithelial cells and
identified 19 epithelial cell-related clusters that were exclusive
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FIGURE 5. hdWGCNA analysis of epithelial cell clusters. (A) Soft threshold selection. (B) Construction of a co-expression
network and the generation of a clustering tree. (C) Heatmap showing module-trait relationships between modules and epithelial
cell clusters. (D) The proportion of eight modules in epithelial cells and the expression of 8 modules in each Seurat cluster.
(E) Quantification of the expression of MEs in each Seurat cluster. hdWGCNA: high dimensional weighted gene co-expression
network analysis.

to prostate cancer tissue. These findings concur with previous
studies, which suggested that the histological changes that oc-
cur first during themalignant transformation of normal prostate
tissue involved abnormal epithelial hyperplasia, and that the
proliferation of tumor epithelial cells is usually associated with
abnormal immune function and abnormal signal transduction
changes [39, 40]. Previous research also showed that abnormal
proliferation of the epithelial cells of the prostate can often
lead to prostate cancer [37]. The higher the proportion of
epithelial cells, the higher the likelihood of cancerous trans-

formation and the more severe the condition. This may be
related to the proliferative capacity of cancer cells, along with
the depth of infiltration, and their tendency to metastasize [41–
43]. Therefore, an increase in the proportion of epithelial
cells is of great significance for the prognostic assessment of
patients with prostate cancer. Base on this, our findings are
consistent with previous single-cell RNA sequencing studies
on the heterogeneity and complexity of prostate cancer, thus
highlighting the importance of characterizing unique cell clus-
ters when attempting to understand disease progression and
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FIGURE 6. Functional enrichment analysis of genes identified by hdWGCNA. (A) Results of pathway enrichment analysis
using the Metascape database. (B) Functional role network. GO: gene ontology; has: homo sapiens; WP: WikiPathways.

identify biomarkers for diagnosis and prognosis.

Matrix metalloproteinases (MMPs) are a series of
structurally related zinc-dependent endopeptidases that
can degrade almost all components of the extracellular
matrix and basement membrane [44]. These peptidases play
important roles in embryonic development, wound healing,
angiogenesis, atherosclerosis, cancer, and tissue ulceration.
Thus far, more than 30 MMPs have been found to be involved
in and play important roles in the occurrence and biochemical
recurrence of prostate cancer in patients [45]. MMP7 is a
member of the matrix metalloproteinase family, which can
regulate the signal transduction pathways involved in cell
growth and angiogenesis, promote cancer cell infiltration
and angiogenesis, degrade the extracellular matrix and

basement membrane, and promote bone resorption. MMP7
also plays an important role in promoting the occurrence and
invasive development of prostate cancer [43, 46]. Therefore,
MMPs have potential clinical applications for the diagnosis
and treatment of prostate cancer. We used intercellular
communication analysis to identify ligand-receptor pairs
between cells and found that these tumor-specific epithelial
cells had a strong influence on other cells such as endothelial
cells, monocytes and B cells. Tumor cells as a class of
metabolically active abnormal cells, they are mostly involved
in cellular communication processes in the form of secretion
to achieve tumor progression. This is process is also necessary
for the formation of cancerous lesions, especially for epithelial
cells [47]. In a previous study, Wu et al. [48] showed that
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FIGURE 7. Machine learning-based screening of potential biomarkers for the diagnosis of prostate cancer. (A) Path
diagram depicting the trajectory of hdWGCNAmodule genes based on LASSO coefficients. Each curve shows the change in value
of each hub gene, in which the vertical axis represents the gene values, the lower horizontal axis represents log(λ), and the upper
horizontal axis represents the number of non-zero hub genes included in the model at a particular time. (B) The LASSO regression
cross-validation curve showing the optimal λ values selected through 10-fold cross-validation. (C) The machine learning models
in training sets, using the mlr3vers package. ROC curves and AUC values for each model are shown. (D,E) The diagnostic
sensitivity and specificity of the LDA (D) and SVM (E) models were evaluated in the testing sets. AUC: the area under the ROC
curve.

the epithelial cells of prostate cancer exhibited tight cellular
communication with tumor-associated fibroblasts. In our
analysis, epithelial cells were shown to be more inclined to act
as active secretors of signaling factors than as target cells, thus
confirming the concept that epithelial cells are the starting
point for tumorigenesis and development. In contrast, the
main products secreted by tumorigenic epithelial cells in our
analysis were MIF, Growth Differentiation Factor (GDF) and

Midkine (MDK).

MIF is a protein produced by mononuclear cells and other
immune cells, and plays a crucial role in regulating immune
responses and inflammatory processes [49]. In previous stud-
ies, investigators observed that MIF usually shows a ten-
dency to be highly expressed in patients with high levels of
metastatic activity [50]. Other studies showed that MIF was
overexpressed in trend-resistant prostate cancer and induced
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FIGURE 8. Subtype classification and immune cell correlation analysis in prostate cancer and deep learning. (A) GSVA
assessment of prostate cancer samples comparing Lasso gene scores between tumor and normal tissues. (B) NMF rank survey
plot. (C) Subtype classification of prostate cancer tumor cells based on the expression of Lasso genes and their relationship with
immune cells. (D) Correlation network between immune cells and Lasso genes. (E) Comparison of the content of 10 types of
immune cells in each subtype. (F,G) The diagnostic sensitivity and specificity of convolutional neural network models in the
training (F) and testing (G) datasets. AUC: the area under the ROC curve.

the dysregulation of cell cycle gene expression by regulating
CXCR7 and further activating theAKT signaling pathway [51].
In contrast, the GDF gene family enhances tumor pathogenic-
ity through cellular checkpoint escape mechanisms, induces
epithelial-mesenchymal transition, regulates extracellular ma-
trix synthesis and degradation, apoptosis, cell migration, and

the activation of cell signaling pathways, thereby promoting
tumor growth, spread, and metastasis [52, 53]. In the case
ofMDK, current studies have demonstrated an association be-
tween neuroendocrine differentiation and prostate cancer, and
that this process is inextricably linked to immune regulation
[54, 55]. Prostate cancer is a complex disease and multiple
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etiological factors play roles in disease progression. Genetic
factors, age, nutrition, and lifestyle habits have all been identi-
fied as potential risk factors for prostate cancer. Advanced age
is a well-established risk factor, and the incidence of prostate
cancer is known to increase with age [56]. In addition, a high
intake of animal fats can increase the risk of prostate cancer
by increasing testosterone levels in the body [57]. Previous
studies have found that smoking and a lack of exercise are
also associated with the development of prostate cancer [58].
Moreover, neuroendocrine prostate cancer (NEPC) is a special
subtype of prostate cancer that is rare but highly malignant;
most cases of NEPC arise from the neuroendocrine differen-
tiation (NED) of prostate cancer; this process is regarded as
an adaptive response or drug resistance mechanism of prostate
cancer. NEPC is characterized by the loss of androgen receptor
expression and the acquisition of neuroendocrine markers such
as chromogranin A and synaptophysin [59, 60].
We also constructed developmental trajectories for all cells

using latent time analysis and identified differential genes by
pseudotime analysis. Currently, pseudotime analysis is not
commonly used for prostate cancer. Pseudotime analysis was
used previously by Lee et al. [61] to validate the differentiation
trajectory and fate of Androgen Receptor (AR)+ cells. In
contrast, in the present study, we estimated the developmental
trajectory of the neoplastic epithelium, which we hope to
use to identify the process that causes healthy epithelial cells
to develop into neoplastic epithelial cells and the specific
biomarkers expressed during the differentiation process. By
performing pseudotime analysis, we were able to estimate the
developmental trajectory of tumor epithelial cells and gain
further understanding of the developmental process of tumor
epithelial cells in prostate cancer.
In addition, we analyzed differential gene expression in

epithelial cell clustering using the hdWGCNA algorithm
and used machine learning techniques to screen for potential
prostate cancer biomarkers. By performing enrichment
analysis, we found that the transmembrane transport of
ions, particularly metal ions, was closely associated with the
expression of genes identified by hdWGCNA, such as copper.
Copper particles are now widely believed to be involved in
the metabolism of epithelial cells in prostate cancer, primarily
through the uptake of copper ions by tumors cells and the
formation of new complexes. In line with this, a range of
dithiocarbamates have been developed to induce apoptosis
in tumor epithelial cells [62]. In contrast, in normal prostate
tissue, the levels of copper and zinc plasma begin to increase
with age, especially in the central region of the prostate. Thus,
changes in ion levels can also be used to predict the process of
transformation of prostate tissue towards malignancy, at least
to some extent [63].
In order to develop a machine learning diagnostic model,

we chose to screen for genes with high predictive relevance
based on Lasso and logistic regression. Lasso regression is a
method used to select linear regression variables from a set of
variables that correlate. Several transcriptomic studies have
already used machine learning to build different diagnostic
models, such as the preoperative scoring of prostate cancer,
and the risk assessment of drug-resistant prostate cancer [64,
65]. The machine learning models we constructed were based

on Lasso genes; our model incorporating SVM and LDA
showed strong sensitivity in both the training set and the test
set. Future research should train this model using data from
a larger cohort. Of course, diagnostic models based solely
on transcriptomic gene expression may also have their own
shortcomings, mainly due to the large individual differences
in transcriptomes and the difficulty of combining them with
more common clinical information. Therefore, a diagnostic
model that combines immune scoring with transcriptomic gene
expression should be developed as a matter of urgency.
Next, we evaluated immune infiltration in prostate cancer

samples and constructed a convolutional neural networkmodel
for deep learning analysis. Our findings provide new concepts
for further understanding the mechanisms responsible for the
occurrence and development of prostate cancer, formulating
individualized treatment strategies, and improving the prog-
nosis of patients. Specifically, we identified the presence
of immunological features between tumor samples and nor-
mal samples following initial immunological analysis of the
samples. Furthermore, by using the NMF method, disease
subtypes were established within tumors rents and identified
immune cell species that were highly associated with disease
subtype and Lasso genes.
The immune microenvironment of prostate cancer has long

been a hot topic of research, and it is thought that immune cells
play a two-way role in the development of this disease. On the
one hand, immune cells, such as T cells and natural killer cells,
are important in identifying and eliminating cancer cells, and
can thus serve as a defensemechanism against the development
of prostate cancer. However, on the other hand, immune
cells could also promote the growth and spread of cancer
cells by creating an inflammatory environment that supports
tumor growth and suppresses anti-cancer immune responses
[66]. In this respect, scRNA-seq data can better represent
the heterogeneity within tumors. A previous ScRNA-seq
study from the University of California demonstrated sig-
nificant heterogeneity of epithelial cells in primary prostate
cancer, particularly early growth response (EGR)-epithelial
cells, which often elicit common tumor microenvironment
responses [37]. This finding provided important clues for
us to better understand the developmental mechanisms and
treatment of prostate cancer [67, 68].
Deep learning enables the perfect combination of immune

microenvironment assessment results and transcriptome ex-
pression levels by using the ratio of immune microenviron-
ment scores to Lasso gene expression levels to build a high-
dimensional array, perform convolution, and generate a new
diagnostic model. Deep learning, a more advantageous mod-
eling approach than machine learning, is currently used in the
study of prostate cancer, mostly for pathological image recog-
nition [69, 70]. Moreover, in a study, researchers were able
to predict drug-resistant patients by building a deep learning
model of biology, known as P-NET [71].

5. Conclusions

In this study, we utilized single-cell RNA sequencing to ex-
plore the characteristics of prostate cancer cells at the sequence
level, cell-to-cell interactions, and immune infiltration. We
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identified tumor-specific epithelial cell clusters; these tumor-
associated epithelial cells were identified as exhibiting strong
metal ion transport activities and could be used to screen for
potential diagnostic biomarkers using machine learning. Our
findings provide a deeper understanding of the mechanisms
responsible for the development of prostate cancer and iden-
tified potential biomarker candidates for clinical diagnosis and
treatment.
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