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Abstract

Prostate cancer is a prevalent malignancy and leading cause of male mortality worldwide,
thus highlighting the need for precision medicine and a combined single-cell and bulk
transcriptome-based diagnostic assessment model. First, we used single-cell RNA
sequencing data and the high dimensional weighted gene co-expression network analysis
(hdWGCNA) method to identify specific cell types in tumor tissues. We identified higher
proportions of epithelial cells and increased intra-tissue heterogeneity in prostate cancer;
most of these epithelial cells were closely associated with metal ion transport functions.
Lasso regression identified diagnostic-related genes that were incorporated into a sample
evaluation model using multiple machine learning algorithms. Thus, we established
a diagnostic model that combined immune cells, diagnostic genes and deep learning
methods. The Linear Discriminant Analysis (LDA) and Support Vector Machine
(SVM) models exhibited the highest diagnostic efficacy for Lasso genes. Neural
network models, combining immune microenvironment assessment and diagnostic gene
expression, also showed good diagnostic efficacy. Our study highlights the potential
of machine learning and convolutional neural networks for the diagnostic assessment
of prostate cancer, thus providing support for personalized treatment decisions, and

identifying areas for future research.
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1. Introduction

Over recent years, the incidence of prostate cancer has shown
an increasing trend and has gradually become an important
disease that threatens the health of men [1]. Diagnosis serves
as a crucial indicator for determining patient treatment and
management strategies, and plays a pivotal role in improving
personalized medicine and patient survival rates. However,
traditional methods for prostate cancer diagnosis have certain
limitations as they rely solely on clinical and pathological
features, as well as conventional statistical models, without
comprehensive consideration of multivariable and complex
relationships [2, 3].

Over recent years, the rapid development of artificial in-
telligence techniques, including machine learning and deep
learning, has provided new opportunities and challenges for the
diagnosis of prostate cancer [4—6]. Machine learning enables
learning from large-scale data, while deep learning, building
upon this foundation, effectively handles multidimensional
arrays, such as convolutional neural network algorithms [7].
These technologies have achieved significant advancements in
various fields. However, to date, their application in the field

of prostate cancer diagnosis remains unexplored [&].

Metal ions are key components of many biochemical pro-
cesses within cells. Cells regulate the influx and efflux of metal
ions through transport proteins, ion channels, and ion pumps to
maintain normal ion levels and homeostasis [9]. The transport
of metal ions plays important roles in cellular physiology
and disease. Previous research has shown that cancer cells
may overexpress specific metal ion transport proteins, leading
to the accumulation of these metal ions within cells, thus
influencing cell signaling and metabolism [10]. In addition,
abnormal metal ion transport may disrupt DNA damage repair
mechanisms, thereby promoting the formation and progression
of tumors. However, the potential mechanisms of metal ion
transport associated with the occurrence and development of
prostate cancer have yet to be elucidated and require further
research and exploration [11].

The aim of this study was to explore a machine learning and
convolutional neural network-based approach for the diagnosis
of prostate cancer and evaluate its feasibility and efficacy in
clinical practice [12]. We utilized a single-cell RNA sequenc-
ing dataset of prostate cancer tissues to identify specific cell
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types within tumor tissues [13]. In addition, we used the high
dimensional weighted gene co-expression network analysis
(hdWGCNA) method to calculate gene modules associated
with the identified cells [ 14]. By integrating conventional tran-
scriptome sequencing data and utilizing Lasso regression, we
identified diagnostic-related genes and constructed a sample
evaluation model using multiple machine learning algorithms
[15]. Furthermore, by evaluating the immune microenviron-
ment of the samples, a diagnostic model integrating immune
cells and genes was developed by deep learning methods.
The specific relationship between our diagnostic model and
patient prognosis was determined by Cox regression [16—
[8]. By performing metascape gene enrichment, we were
able to identify this class of cells as being associated with
transmembrane transport, particularly the transport of metal
ions. By comparing the performance differences between
our model and traditional methods, we aimed to demonstrate
the advantages of machine learning and convolutional neural
networks in the diagnosis of prostate cancer and provide robust
support for future personalized treatment decisions.

2. Materials and methods

2.1 Data sources

The scRNA-seq dataset GSE185344 [19] (including
samples of 7 primary tumors undergoing prostatectomy)
and GSE117403 [20] (including 16 samples of normal
human prostate), were acquired from the Gene Expression
Omnibus (GEO); these databases are publicly available
and can be accessed through the GEO website
(https://www.ncbi.nlm.nih.gov/geo/). To complement
our analysis, we obtained bulk RNA sequencing data from
prostate adenocarcinoma (PRAD) from the Cancer Genome
Atlas  Program (TCGA, https://portal.gdc.cancer.gov/)
consisting of 55 normal samples and 496 tumor samples. In
addition, we obtained array data that was used to build the
Cox regression model.

2.2 Data processing

The scRNA-seq data underwent preprocessing using the Seu-
rat package (v4.2.1) [21] in the R programming language
to ensure the quality of subsequent analyses. Initially, we
excluded cells exhibiting mitochondrial gene expression ex-
ceeding 40%, those with a low number of detected genes
(<200), and those with an excessive number of detected genes
(>2500). The Harmony (v0.1.1) package [22] was used to
remove batch effects between merged samples. The top 2000
highly variable genes were selected for principal component
analysis (PCA). Subsequently, the first 15 principal compo-
nents (PCs) were chosen for further analysis. Then, the “Find-
Clusters” function was employed to cluster and visualize the
PCs using a Uniform Manifold Approximation and Projection
(UMAP) approach. Next, the “FindAlIMarkers” function was
utilized to identify differentially expressed genes within each
cluster. The “DoHeatmap” function was used to plot a heatmap
for selected genes. Cell annotation was performed by the “sin-
gleR” (2.0.0v) package [23], which compares gene expression
profiles in the reference dataset to obtain a predicted cell type

label for each cell in the single-cell sequencing dataset based
on the closest match found in the reference dataset.

2.3 Intercellular communication analysis
and pseudotime analysis

Intercellular communication analysis was performed by the
CellChat (v1.6.1) package [24], an R package that was de-
veloped to analyze cell-to-cell interactions in single-cell tran-
scriptome data. This software clusters cells, infers interac-
tions between different units, and constructs cell-to-cell com-
munication networks. Using Gene Set Enrichment Analysis
(GSEA), this software annotates functional modules for each
clustering module. CellChat is a reliable tool for studying
cell interactions and the mechanisms of complex diseases. We
chose “Secreted Signaling pathway” to explain the potential
mechanism. To perform pseudotime analysis, we used the
monocle (v2.26.0) package [25] in R to construct a cell order-
ing trajectory, reduce the dimensions of the gene expression
data, create a minimum spanning tree, order cells along the
trajectory, and conduct differential gene expression analysis.

2.4 High-dimensional weighted
co-expression network analysis (hdWGCNA)

For scRNA-seq data, we applied the hdWGCNA (v0.1.1.9010)
package to cluster genes [26]. We filtered out genes expressed
in less than 5% of cells and used the remaining genes to
construct the hdWGNCA object. The co-expression network
was constructed using a soft power value of 9 for subsequent
analysis. Module eigengenes (MEs) provided a representation
of the gene expression profile within each co-expression mod-
ule. We associated each of the MEs with a Seurat cluster in a
dotplot to identify the connection between them. The top 50
genes with the highest correlation in the module were selected
for downstream analysis.

2.5 Gene enrichment

To investigate the biological functions and pathways
associated with common genes, we conducted Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses using Metascape (https:
//metascape.org/gp/index.html#/main/stepl), a
web-based portal that provides a comprehensive resource to
annotate and analyze gene lists for experimental biologists
[27]. The screening conditions were set to a minimum overlap
of 3 and a minimum enrichment of 1.5. Filter pathways with
p-values < 0.01 were used to plot bar charts and network
interactions.

2.6 Lasso regression and machine learning

Lasso regression is used to perform variable selection by
shrinking the regression coefficients associated with the least
important variables to zero, thus resulting in a parsimonious
model. This strategy can enhance our understanding of
complex biological processes and disease mechanisms. To
construct a preliminary prediction model, we used bulk
sequencing data from the TCGA-PRAD and conducted
two-step analysis using the glmnet package. First, we used
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logistic regression analysis to identify genes with statistical
significance (p < 0.05). Then, we applied Lasso regression to
further determine the most valuable variables. The cv.glmnet
function was then utilized to identify highly valuable genes.

2.7 Machine learning

To further refine our model, we used machine learning methods
to improve the predictive accuracy. The mlr3verse package
was utilized to construct various classifiers, including Linear
Discriminant Analysis (LDA), Logistic Regression (Log Reg),
Random Forest, Support Vector Machine (SVM), Naive Bayes,
K-nearest neighbor (KNN), rPart, Random Forest, among oth-
ers. We used a 5-fold cross-validation method to partition the
dataset. Finally, receiver operating characteristic (ROC) curve
analysis was applied to evaluate the diagnostic accuracy and
optimal threshold value of these models. For each model,
we also calculated the area under the ROC curve (AUC),
sensitivity and specificity.

2.8 Geneset immune infiltration evaluation

To analyze immune-typing, we conducted ssGSEA analysis
using the GSVA package (v1.46.0) [28] to determine the het-
erogeneity of Lasso genes identified between tumor and nor-
mal tissues at the bulk level. Subsequently, we utilized the
IOBR package (v0.99.0) [29] to calculate the correlation be-
tween Lasso genes and immune cells. The IOBR package
provides a framework that allows us to calculate the correlation
between Lasso genes and immune cells [29]. By integrating
results, it is possible to gain insights into the immune-typing
of tumors and normal tissues and evaluate the role of Lasso
genes in the immune response. We integrated the results by
calculating the gene-set score using methods such as PCA, z-
score, and ssGSEA; in addition, MCPcounter was applied to
calculate detailed taxonomic scores for epidemic cell taxa.

2.9 Non-negative matrix factorization

To construct disease subtypes using the MEs module gene,
we used the NMF package (v0.25) [30] in R to perform non-
negative matrix factorization. This strategy can improve the
resolution of clustering or trajectory analysis in single-cell
transcriptomes, thereby accelerating studies of complex bio-
logical processes and disease mechanisms. Firstly, we re-
processed the gene expression data to ensure accurate results.
Then, the “NMF” function was used to compute the NMF with
specific settings (rank: 5; nrun: 100).

2.10 Deep learning

Finally, deep learning was utilized to develop a novel diag-
nostic prediction model that integrated the immune microen-
vironment and Lasso gene expression levels to predict the
prognosis of patients at multiple levels. The Keras package
(v2.11.0.9000) [31] was utilized to integrate patient informa-
tion, Lasso gene expression levels, deconvolution MCPcounter
scores, and immune cell correlations into multi-dimensional
arrays, which were then used to train and test the deep learning
model utilizing convolution algorithms.
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3. Results

3.1 Annotation and identification of
subgroups in scRNA-seq data

Following quality control, a total of 35,673 cells were included
in this study from GSE185344 and GSE117403 (Fig. | A). Har-
mony was utilized to remove batch effects and integrate the two
cell datasets. PCA analysis (Fig. 1B) showed that the sample
heterogeneity caused by different batches was essentially elim-
inated. Seurat was utilized for further dimensionality reduction
and clustering, and singleR was utilized to identify specific
cell types and proportions, including T cells, epithelial cells,
monocytes, smooth muscle cells, endothelial cells, natural
killer cells (NK cells), common-myeloid progenitors (CMP),
chondrocytes, macrophages, and B cells (Fig. 1C,D). Analysis
showed that the proportion of epithelial cells was significantly
increased in prostate cancer samples. The identified cell types
and their expression levels were used for differential analysis
and heat map visualization (Fig. |E).

Furthermore, to investigate the changes in epithelial cells,
Seurat was used to isolate epithelial cells and perform sec-
ondary dimensionality reduction clustering. In the second
clustering, 19 epithelial cell-related clusters were identified,
and their proportions were calculated (Fig. 2A,B), as well as
their proportions in healthy and cancerous tissues (Fig. 2C,D).
Clusters 0, 1, 2,4, 6,7,9, 10 and 18 were exclusive to prostate
cancer tissue.

3.2 Intercellular communication and
pseudotime analysis

Intercellular communication refers to the process of informa-
tion transmission between cells and between cells and the
environment and the integration of signals in the cell; this plays
akey role in maintaining the normal function and physiological
processes of multicellular organisms [32, 33]. Intracellular
communication is able to regulate the growth, differentiation
and function of cells to guarantee the correct development and
normal functionality of tissues and organs [24]. Intercellular
communication abnormalities are closely related to the oc-
currence and progression of a variety of important diseases
[34]. Therefore, it is of great significance to understand
the mechanism and regulation of intercellular communication
to reveal the molecular mechanisms responsible for disease
occurrence and develop new therapeutic methods. To identify
the interactions between these tumor-specific epithelial cell
clusters and other cells, we utilized the Intercellular Com-
munication Analysis method to identify ligand-receptor pairs
between these cell clusters. Fig. 3A shows the total number and
strength of interactions between these epithelial cells and other
cells. We found that tumor-specific epithelial cells had a strong
effect on endothelial cells, monocytes, and B cells. Fig. 3B,C
display the main ligand-receptor pairs when epithelial cells
were used as the source and target, respectively. When epithe-
lial cells were used as the target, there were few statistically
significant ligand-receptor pairs (Midkine (MDK)-Nucleolin
(NCL), a-Methyl-p-tyrosine (AMPT)-Insulin receptor (INSR),
Pleiotrophin (PTN)-NCL). When these were used as the lig-
and, we found that they had higher levels of activity. The
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FIGURE 1. Overview of single-cell RNA sequencing analysis. (A) Flowchart of data quality control and analysis. (B)
Principal component analysis (PCA) plot showing batch effects removal. (C) t-SNE plot showing cell clustering by cell type. (D)
Cell proportions of different subpopulations of cells in PRAD tissue and normal tissue. (E) Differential gene expression analysis
and heatmap visualization of specific cell types in prostate cancer samples compared to healthy tissues. NK cells: natural killer
cells; CMP: common-myeloid progenitors; PRAD: prostate cancer; /L70: Interleukin 70; CCL5: C-C Motif Chemokine Ligand
5; MSMB: Microseminoprotein Beta; A CPP: Prostatic Acid Phosphatase; /L/B: Interleukin1B; LYZ: Lysozyme; RGS5: Regulator
Of G Protein Signaling 5; TAGLN: Transgelin; [FI27: Interferon Alpha Inducible Protein 27; SPARCLI: SPARC Like 1; IGFI:
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relationship between macrophage migration inhibitory factor
(MIF) and MDK as the ligand-receptor pair played a dominant
role. Most ligand-receptor pairs were present in both tumor and
healthy cells, but overall, the communication effect of tumor
cells stronger (Fig. 3D).

Next, pseudotime analysis was used to construct the devel-
opmental trajectory of all cells. Six developmental branching
points were identified, as shown in Fig. 4A, which displays
the relationship between Seurat clusters and the trajectory.
Some prostate cancer-specific epithelial cell clusters, such as
cluster 0, showed a specific distribution along the trajectory.
Pseudotime analysis was then used to analyze the developmen-
tal direction of the trajectory (Fig. 4B). The Beam algorithm
was used to cluster pseudotime analysis results and generate
differential genes before and after developmental branching
points (Fig. 4C).

3.3 hdWGCNA identification of
tumor-associated epithelial clusters and
functional enrichment

Next, the hdWGCNA algorithm was used to analyze gene
differential expression in the epithelial cell clusters. The
appropriate soft power for a weighted average co-expression
network was selected to establish the co-expression network
(Fig. 5A,B) in order to reflect the inherent properties of the
data. Eight module Eigengenes (MEs) were identified, except
for the gray module (brown, blue, red, yellow, green, black,
turquoise, pink), and their interrelations are shown in Fig. 5C.
Notably, the pink module had a significant association with the
turquoise module, while the green module was associated with
the black module. The distribution of the 8 MEs in epithelial
cells is demonstrated in Fig. 5D, and the expression of MEs in
each Seurat cluster is quantified in Fig. 5E. The pink, turquoise,
black, green and yellow modules had a higher proportion of
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gene expression and average expression level in the tumor-
specific epithelial cell clusters. The top 50 genes with the
highest correlation per module were selected (Supplementary
Table 1).

To clarify the functionality of the genes identified in each
module, we used the Metascape database for Kyoto Encyclo-
pedia of Genes and Genomes (KEGG) as well as GO func-
tional enrichment (Fig. 6A,B). Analysis showed that the genes
identified by hdWGCNA were involved in monoatomic cation
transport, copper homeostasis, transition metal ion transport
and other processes of metal ion transport across membranes.
In addition to this, we identified close links with fatty acid
metabolism, cholesterol metabolism and cellular respiration.
Other genes were involved in fatty acid metabolism, choles-
terol metabolism, cellular respiration and other physiological
processes.

3.4 The use of machine learning to identify
potential diagnostic biomarkers for
prostate cancer

Logistic regression and Least Absolute Shrinkage and
Selection Operator (LASSO) regression algorithms were
applied to screen for candidate genes, as demonstrated
in Fig. 7A,B. LASSO regression identified 33 potential
biomarkers (Supplementary Table 2). Machine learning
based on the mlr3vers package was performed, and the results
are presented in Fig. 7C. The Linear Discriminant Analysis

(LDA), Logistic Regression (Log Reg), Random Forest,
and Support Vector Machine (SVM) models exhibited high
sensitivity in the training set. In the testing set, the LDA and
SVM models demonstrated the highest diagnostic sensitivity
and can be used effectively for the diagnosis of prostate cancer
(Fig. 7D,E).

3.5 Immune infiltration assessment of
prostate cancer samples

The results of single-sample Gene Set Enrichment Analysis
(ssGSEA) assessment for prostate cancer samples are shown
in Fig. 8A, with LASSO gene scores significantly higher in
tumor tissues than in normal tissues. Next, Non-Negative
Matrix Factorization (NMF) clustering was performed based
on the expression profile of Lasso genes, and the NMF rank
survey plot is presented in Fig. 8B, with 5 selected as the
appropriate NMF clustering parameter. Ultimately, we identi-
fied 5 subtypes of prostate cancer tumor cells, as demonstrated
in Fig. 8C, along with their relationships with immune cells.
The correlation between immune cells and Lasso genes is
illustrated in Fig. 8D. We found that the expression levels of
Aryl hydrocarbon receptor (AHR) were positively correlated
with fibroblasts (» > 0.5, p < 0.001), endothelial cells (» >
0.5, p < 0.001), neutrophils (» > 0.5, p < 0.001), myeloid
dendritic cells (» > 0.5, p < 0.001), monocytic lineage (» >
0.5, p < 0.001), cytotoxic lymphocytes (» > 0.5, p < 0.001),
and T cells (r > 0.5, p < 0.001). The expression levels
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FIGURE 4. Pseudotime analysis of developmental trajectory. (A) Visualization of the developmental trajectory of all
cells. (B) Plot showing the developmental direction of the trajectory, generated using pseudotime analysis. (C) Differential gene
expression analysis of genes before and after developmental branching points, as generated by the the BEAM algorithm.

of serine/threonine kinase 38 like (STK38L) were positively
correlated with fibroblasts (» > 0.5, p < 0.001), endothelial
cells (r > 0.5, p < 0.001), neutrophils (» > 0.5, p < 0.001),
monocytic lineage (» > 0.5, p < 0.001), NK cells (» > 0.25,
p < 0.001), cytotoxic lymphocytes (» > 0.25, p < 0.001),
and T cells (» > 0.25, p < 0.001). The expression levels
of transcription elongation factor A like 1 (TCEALI) were
positively correlated with fibroblasts (» > 0.5, p < 0.001),
endothelial cells (» > 0.5, p < 0.001), neutrophils (» > 0.25, p
< 0.001), monocytic lineage (r > 0.25, p < 0.001), cytotoxic
lymphocytes ( > 0.25, p < 0.001), CD8 T cells (r > 0.25, p
< 0.001), and T cells (» > 0.25, p < 0.001). Fig. 8E shows a
comparison of the content of 10 types of immune cells in each
subtype, among which T cells, monocytic lineage, and CD8+
T cells exhibited the most significant statistical differences in
proportion.

3.6 Construction of a convolutional neural
network model with immune scores and
gene expression

The Keras package was used for preliminary processing. The
calculated ratio of immune score and gene expression was
used as the learning data for the neural network model, after
constructing a high-dimensional array for deep learning. The
results of deep learning are presented in Fig. 8F. In the training
set, the ROC curve had an AUC of 0.843; this compared to an
AUC of 0.834 in the testing set, thus demonstrating the strong
diagnostic performance of the deep learning model (Fig. 8G).

4. Discussion

Prostate cancer is a highly prevalent form of cancer, and the di-
agnosis and treatment of this condition represents a major chal-
lenge to the medical community. Single-cell RNA sequencing
technology has emerged as an efficient tool for investigating
the molecular mechanisms underlying the formation and devel-
opment of cancer [35, 36]. The rapid development of single-
cell sequencing technology has provided a new approach for
investigating the prostate cancer [37]. This method previ-
ously demonstrated tumor heterogeneity in prostate cancer,
and comprehensive analysis of the tumor microenvironment
demonstrated the complex cell composition of prostate cancer,
explored potential interactions between tumor cells and other
cells, and provided a deeper understanding of the composition
of the tumor microenvironment [19]. This has provided more
reliable data for clinical treatment and provided a theoretical
foundation for further research, and provided guidance for
precise personalized treatment [38].

In the present study, we utilized single-cell RNA sequencing
to investigate changes in specific cell types in samples of
prostate cancer, including T cells, epithelial cells, monocytes,
smooth muscle cells, endothelial cells, NK cells, CMP, chon-
drocytes, macrophages, and B cells. We used advanced ana-
lytical methods, including Harmony and Seurat, to eliminate
batch effects, cluster cells, and identify unique cell types. Our
analysis showed that the proportion of epithelial cells were
significantly increased in samples of prostate cancer. Then, we
performed secondary clustering analysis on epithelial cells and
identified 19 epithelial cell-related clusters that were exclusive
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