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Abstract
Prostate adenocarcinoma (PRAD) is a major threat to male health worldwide with a high
mortality rate. New therapeutic strategies for the treatment of this malignant disease
are of tremendous significance. Much attention has been paid to the involvement of
immune cells in the prevention and treatment of cancer as well as how their regulatory
systems contribute to effective cancer treatment. In this study, we constructed prognostic
immune profiles based on The Cancer Genome Atlas (TCGA)-PRAD data sets and
tested their predictive power on total and internal data sets. Then, we looked at how
the lymphocyte of tumor invasion varied between the high-risk group and the low-
risk group. Five immune-related genes made up the immune marker, which was an
independent predictive factor in patients with PRAD. Patients in the low-risk score group
had a higher rate of overall survival and a stronger infiltration of immune cells in the
tumor microenvironment, which was highly related to clinical outcomes but required
prospective validation.
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1. Introduction

Prostate adenocarcinoma (PRAD) is a leading contributor to
deaths in men globally [1]. In order to effectively treat this
cancer, new therapeutic approaches are crucial [2]. Much
focus has been paid to the involvement of immune cells in
cancer treatment and prevention, as well as how their regula-
tory mechanisms provide effective cancer therapy. At present,
Immunotherapy is a hot spot in clinical tumor therapy. A
large number of clinical studies or basic experiments have
proved that immune checkpoint inhibitors (ICIs) can play a
wonderful role in tumor therapy [2]. Nevertheless, only a
small proportion of cancer patients can benefit from ICIs, and
the overall response rate is low [1]. In colorectal, ovarian
and hepatocellular carcinoma, several immune-related genes
(IRGs) have been identified as prognostic biomarkers. These
genes have been linked to immune cells and relevant molecular
mechanisms in the tumor microenvironment, and to some ex-
tent, they reflect the status of the immune response in the tumor
microenvironment [3]. More recently, using transcriptome
sequencing data, computer algorithms like Tumor Immune Es-
timation Resource (TIMER) [4] and CIBERSORT have made

it possible to determine the immune spectrum of cancer. The
effect of immunotherapy is revealed by the immune landscape
of cancer, which is also highly linked to patient prognoses.
It is important to develop a comprehensive immune spectrum
model to evaluate the immune-related efficacy of therapies.
Few studies have conducted immune profiling and investigated
IRGs for their predictive significance in PRAD. In this work,
we developed an immune marker based on IRGs, and we
looked at how it related to clinic-pathological characteristics
and clinical outcomes in PRAD patients [5]. In addition,
we investigated the molecular functions, cellular components
and possible pathways of Different expressed immune-related
genes (DEIRGs) enrichment in the prediction model by molec-
ular enrichment analysis.

2. Materials and methods

2.1 Differentially expressed IRGs
All original data were obtained from the TCGA database. We
examined the differentially expressed genes between PRAD
and corresponding normal tissues to screen out IRGs involved
in oncogenesis. The abnormally expressed genes were iden-
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tified using the software edgeR (version 4.0.0, John Cham-
bers and colleagues, Auckland, New Zealand) (https://www.r-
project.org/), as described previously (adjusted p value< 0.05
and |log2 (fold change)| > 1). The intersection between
differentially expressed genes and the IRGs was termed dif-
ferentially expressed IRGs.

2.2 Pathway and functional enrichment
analyses
We carried out Pathway and functional enrichment analyses
to investigate the biological significance of these differentially
expressed IRGs. Kyoto Encyclopedia of Genes and Genomes
(KEGG) [6] and Gene Ontology (GO) [7] enrichment analyses
were carried out. Terms and pathways were regarded as
significantly enriched objects if their false discovery rate was
less than 0.05. The package ggplot2 was used to carry out the
visualization. Pathway illustrations were generated using the
“pathview” R package.

2.3 Constructing an IRGs-related immune
signature for PRAD
We identified immune genes associated with prognosis. To
verify their robustness and predictive ability, we developed a
prognostic risk model. We first screened for immune-related
genes with prognostic significance by univariate Cox propor-
tional hazards regression analysis. Genes with a p-value of less
than 0.05were examined by the glmnet software using themin-
imum absolute contraction and selection operator (Lasso) to
prevent over-fitting [8]. After screening by the Lasso model, a
multivariate Cox proportional hazards model was employed to
develop the immune-related risk model as follows: risk score
= Gene A level× coefficient a + gene B level× coefficient B +
gene C level× coefficient C + ... + gene N level× coefficient
N. The prognosis for PRAD patients is represented by the
risk score in the model, where the lower the risk score, the
better the prognosis. The patients were classified into high-risk
and low-risk groups using the median risk score as the cut-off
value. With log-rank p-value < 0.05 considered statistically
significant (for packet survival and investigator), predictive
ability was calculated using Kaplan-Meier survival curves.
Using a time-dependent receiver operating characteristic curve
(ROC), the prediction ability of this immune signature was
evaluated [2, 9, 10].

2.4 Calculating the ratio of
tumor-infiltrating immune cells
By using a deconvolution technique, CIBERSORT could de-
termine the ratios of infiltrated immune cells from tissue tran-
scriptional profiles. We computed the ratios of 22 types of
tumor-infiltrating immune cells using the TCGA-PRAD tran-
scriptional profiles and the CIBERSORT R script [11, 12].

2.5 Statistical analysis
Chi-square and Student’s t-tests were conducted to examine
differences among variables. The effects of multiple clinic-
pathological characteristics along with the immune signature
on patients’ survival were evaluated using univariate and mul-

tivariate cox regression analyses [13]. Using R software pro-
gramming language (version 0.0.0). Statistical analysis was
carried out. The package “pheatmap” was used to create the
heat maps. Statistical significance was defined as p-value
< 0.05.

2.6 Quantitative reverse
transcription-polymerase chain reaction
(qRT-PCR)
The specific experimental steps are as described in the previous
paper [14]. In brief, total RNA was extracted from normal
tissue and tumor tissue from PRAD patients using TRIzol
(15596026, Thermo Fisher Scientific, Waltham, MA, USA).
Quantitative reverse transcription-polymerase chain reaction
(qRT-PCR) was conducted on the obtained RNA from each
sample (2 µg) with FastStart Universal SYBR® Green Master
(4913914001, Roche, Basel, Switzerland., USA) on a Q5 PCR
System (Roche, USA). The primers were showed in Table 1.

3. Results

3.1 Identification of prostate cancer
prognosis-related differentially expressed
genes
We first classified the prostate cancer samples in the TCGA
database as “Alive” and “Dead” according to patients’ overall
survival profiles. After adjusting the cut-off value adjusted
p value < 0.05 and |log2 (fold change)| > 1). Then, 1309
Differentially expressed genes were screened. At the same
time, 2489 immune-related genes with an “Immune” correla-
tion score greater than 2 were screened from the GeneCards
database. After crossing, 18 immunologically related prognos-
tic differentially expressed genes were obtained.

3.2 The prognosis of PRAD patients can be
predicted by the five-gene immune
signature
To evaluate the predictive significance of the chosen 18 dif-
ferentially expressed IRGs and to avoid over-fitting, we fur-
ther performed a LASSO analysis in which five of the 18
genes were predictors of patient outcome (Fig. 1A,B). We
ranked patients’ risk scores and outlined their distribution
(Fig. 1C Top). A dot plot (Fig. 1C Middle) was used to
display the risk scores, survival status and overall survival of
the patients. The heat map displays the five IRGs’ expression
patterns in patients with varying risk scores. In the low-
risk group, Insulin Like Growth Factor 1 (IGF1) and Opi-
oid Receptor Kappa 1 (OPRK1) were expressed at high lev-
els, whereas in the high-risk group, Anti-Mullerian Hormone
(AMH), Defensin Alpha 5 (DEFA5) and Serum Amyloid A1
(SAA1) were expressed at high levels. The predictive ability
of this immune signature was further verified. Prostate cancer
patients were classified into high-risk and low-risk groups
(categories). Those with low-risk scores had longer Overall
survival (OS) duration, according to the survival analysis (p
= 0.004) (Fig. 1D). Moreover, this immune signature’s area
under the curve (AUC) value was 0.875 (Confidence interval
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TABLE 1. Forward and reverse primer on gene signatures of prognostic models.
Gene Forward primer (5′-3′) Reverse primer (5′-3′)
AMH ACTCATCCCCGAGACCTACC CGATGCTTGGGGTCCGAATA
DEFA5 GTCTGGGGAAGACAACCAGG GTAGAGGCGGCCACTGATTT
IGF1 AGAGCCTGCGCAATGGAATA ACCCTGTGGGCTTGTTGAAA
OPRK1 TCGTGATCATCCGATACACAAAGA CGATCTTTCTCTCGGGAGCC
SAA1 CAGATCAGGTGAGGAGCACAC CATAGTTCCCCCGAGCATGG
GAPDH AATGGGCAGCCGTTAGGAAA GCCCAATACGACCAAATCAGAG
AMH: Anti-Mullerian Hormone; DEFA5: Defensin Alpha 5; IGF1: Insulin Like Growth Factor 1; OPRK1: Opioid Receptor
Kappa 1; SAA1: Serum Amyloid A1; GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase.

(CI): 0.796–0.953) (Fig. 1E). Time-dependent ROC curves at
1-year, 3-year and 5-year durations (AUC = 1.000, 0.891 and
0.912, respectively) are also displayed (Fig. 1F).

3.3 The tumor immune microenvironment
and the 5-IRG signature
To generate histograms displaying the proportion of
22 immune cells infiltrating in tissue samples from the
PRAD patients, we computed the proportion of 22 immune
cell types in each PRAD sample using the CIBERSORT
method (Fig. 2A,B). The proportion of immune cells that
differed between the groups with high and low-risk scores
was compared. The percentage of B cells, Eosinophils,
Macrophages, mast cells, Neutrophils, NK (Natural killing
cell) CD56 (Neural Cell Adhesion Molecule 1) bright cells,
NK cells Tgd, PDC (plasmacytoid dendritic cell), Th1 cells
and T helper cells differed remarkably (Fig. 2C) [15].
We compared the expression differences of prognostic

DEirgs in TCGA-PRAC, with only AMH being significantly
overexpressed in the tumor (Fig. 3A) while having the same
expression differences in paired samples of tumor tissue
(Fig. 3B). The expression of the five genes was significantly
different and were demonstrated using a between-group
differential gene volcano map (Fig. 3C) and a sequence map
(Fig. 3D) based on patient survival status. Subsequently,
both univariate and multivariate Cox regression analyses
were carried out to investigate the prognostic value of model
DEIRGs (Fig. 3E,F & Table 2).

3.4 Relationship between survival
prognosis and 5-gene expression difference
in prostate cancer patients
We explored the association of differences in 5-gene
expression and disease-specific survival, overall survival and
progression-free interval in prostate cancer patients. Although
high AMH expression was not significantly linked to low
OS (overall survival) rate. Prostate cancer patients with low
expression of SAA1 had poor Overall Survival (p = 0.041)
(Fig. 4A), patients with elevated AMH expression levels had
worse overall survival (p = 0.127) (Fig. 4B). And patients with
OPRK1-low expression had poor disease-specific survival
and overall survival (p = 0.033 and 0.022, respectively)
(Fig. 4C,D); Progression-free interval and disease-specific
survival (p = 0.004, 0.029, respectively) were obtained in

patients with prostate cancer with low expression of IGF1
(Fig. 4E,F) [16].

3.5 The efficacy of prognostic identification
was verified
To better understand how a model gene’s expression affects
clinical prognosis in prostate cancer, ROC curve analysis was
used to verify its efficacy in differentiating different clinical
outcomes. We first validated the diagnostic efficacy of a
five-gene prognostic model for prostate cancer disease status
as DEFA5 (AUC = 0.464), IGF1 (AUC = 0.636), SAA1
(AUC = 0.553), OPRK1 (AUC = 0.493), and AMH (AUC
= 0.809), respectively (Fig. 5A). And then, we validated the
efficacy of 5-gene prognostic models for the identification
of Clinical variable outcomes of Alcohol history, Smoker,
Lymphnode neck dissection, Radiation therapy, Age, Clinical
stage, Histologic grade, Clinical T stage, pathologic stage,
pathologic N stage, pathologic T stage, respectively (Fig. 5B–
L). These results suggest that, for the assessment and antici-
pation of clinicopathological factors in prostate cancer, the 5-
gene prognostic model may be a potential biomarker.

3.6 The prognostic model is associated with
prostate cancer
To further explore the association of 5-gene prognostic
models with prostate cancer, we explored their association
with the expression of well-known molecular markers known
to be associated with prostate cancer. We selected some
reliable prostate cancer biomarkers for further analysis to
explore whether the 5-gene prognostic model is associated
with the molecular mechanisms of prostate cancer initiation
and progression. It has been reported that transmembrane
serine endopeptidase 2 (TMPRSS2) and ETS-related genes
(ERG) frequently fuse during Principal component analysis
(PCA) [17]. A mitochondrial and peroxisome enzyme, Alpha-
methylacyl-coa racemase (AMACR), participates in fatty acid
oxidation and intermediate products of bile acids [18]. The
over-expression of AMACR on prostatic epithelial cells occurs
in about 80% of prostate cancer cases, and the detection of
AMACR by immunohistochemistry (IHC) helps to distinguish
benign prostate cancer from prostate cancer [19]. At the same
time, studies have reported that AMACR overexpression in
prostate cells predicts poor prognosis (associated with a high
Gleason score and high initial PSA levels) and an increased
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FIGURE 1. Lasso analysis and forest plot show multivariate Cox model results for 5 immune-related genes. (A) Cross
validation of optimal parameter selection in LASSO model. (B) LASSO coefficient profiles of 18 prognostic immune-related
genes; (C) The risk factor graph shows the distribution of risk scores (Top), the relationship between risk scores and survival time
(middle), and the expression patterns of five immune-related genes in the high-and low-risk groups (bottom); (D) Kaplan-Meier
curves of overall survival of PRAD patients in high- and low-risk score groups; (E) Receiver performance curve based on risk
score; (F) Time-dependent receiver operating characteristic curves. AUC: area under the curve; TPR: True positive rate; FPR:
False positive rate; OS: Overall survival; AMH: Anti-Mullerian Hormone; DEFA: Defensin Alpha; IGF: Insulin Like Growth
Factor; OPRK: Opioid Receptor Kappa; SAA: Serum Amyloid A.
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FIGURE 2. Evaluation of immune infiltration. (A,B) Stacked bar graphs showing the proportion of infiltrating immune cells
between the high-and low-risk groups. (C) Boxplot of the difference in immune cell infiltration between the high-and low-risk
groups (Wilcoxon’s test; *: p < 0.05; **: p < 0.01; ***: p < 0.001). Horizontal coordinates indicate the type of infiltrating
immune cells, and the vertical axis indicates the proportion of infiltrating immune cells. Immune cell abbreviation: Th: Helper T
lymphocytes; TR: regulatory T cell; NK: Natural killing cell; CD56: Neural Cell Adhesion Molecule 1; DC: Dendritic cell; PDC:
plasmacytoid dendritic cell; TFH: Follicular helper T cells; Tgd: gamma delta T.

risk of bone metastasis. In addition, there have been reports
linking several Solute Carrier Family 45 Member (SLC45A)
family genes to prostate cancer [20–22]. As SLC45A3
(prostate cancer-associated protein 6/P501S/protein) is mainly
expressed in the Gleason apparatus of prostate epithelial cells
and is highly specific for prostate gland cells, it has been
used to distinguish between other tumor types and metastatic
prostate cancer [22, 23]. SLC45A3 may be expressed in
PSA-negative prostate tumors, so the combined use of these
markers may increase the sensitivity to identify prostate
cancer metastases. SLC45A3 is weakly expressed in some
aggressive tumors and is associated with increased Gleason
score and risk of tumor recurrence. Overall findings revealed
that in the 5-gene prognostic model, OPRK1 expression
was positively linked to BRCA1 DNA Repair Associated
(BRCA1), BRCA2 DNA Repair Associated (BRCA2), and
AMACR (Fig. 6A,B,E). The positive correlation between
OPRK1 expression and TMPRSS2 was significant, while the

negative correlation between SAA1, AMH and TMPRSS2
was significant (Fig. 6C). SAA1 was positively correlated
with Hexokinase 3 (HK3), SLC45A1, SLC45A3, SLC45A4
(Fig. 6D,F–H).

3.7 Functional enrichment analysis

In addition, we summarised the differential genes between the
low-risk and high-risk categories, followed by GO and KEGG
enrichment analyses. Based on the results of the GO enrich-
ment analysis (Fig. 7A–D& Table 3), the BP with significance
were negative regulation of the reproductive process, ovulation
cycle, oogenesis, interleukin-1 production and regulation of
Interleukin-1 production, respectively. Cell component (CC)
was enriched in transport vesicles, exocytic vesicles, cyto-
plasmic vesicle lumen, vesicle lumen and secretory granule
lumen. Hormone activity, growth factor activity, insulin re-
ceptor binding, insulin-like growth factor receptor binding,
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FIGURE 3. Differential expression of prognostic DEIRGs in TCGA-PRAC. (A,B) The same difference was found in tumor
tissues and normal samples. (C,D) Volcano plot and sequence plot showed the difference and significance of the five genes in the
prognostic model based on the survival status of the patients. (E,F) Forest plot of 5 modifiers with prognostic value in univariate
andmultivariate Cox regressionmodels. DEIRGs: Different expressed immune-related genes; TCGA: The Cancer GenomeAtlas;
PRAC: Prostate adenocarcinoma; AMH: Anti-Mullerian Hormone; DEFA5: Defensin Alpha 5; IGF1: Insulin Like Growth Factor
1; OPRK1: Opioid Receptor Kappa 1; SAA1: Serum Amyloid A1; GAPDH: Glyceraldehyde-3-Phosphate Dehydrogenase.
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TABLE 2. Univariate and multivariate Cox regression analysis of predictive model molecules for prostate cancer
prognosis.

Characteristics Total Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Pathologic T stage 494 0.241

T2 189 Reference

T3 294 3.380 (0.631–18.091) 0.155

T4 11 0.000 (0.000–Inf) 0.998

Pathologic N stage 428 0.126

N0 348 Reference

N1 80 3.470 (0.767–15.695) 0.106

Clinical T stage 407 0.023

T1 177 Reference Reference

T2 175 0.850 (0.140–5.180) 0.860 0.000 (0.000–0.000) <0.001

T3 53 6.808 (1.126–41.170) 0.037 2.907 (0.464–18.207) 0.254

T4 2 40.396 (3.510–464.903) 0.003 60195041998086.5000
(5776198188284.9502–
627305878891122.0000)

<0.001

Clinical M stage 460 0.015

M0 457 Reference Reference

M1 3 59.773 (6.563–544.434) <0.001 0.000 (0.000 - Inf) 0.991

Primary therapy outcome 440 0.013

PD 29 Reference Reference

SD 30 0.264 (0.030–2.370) 0.234 9.122 (0.803–103.612) 0.075

PR 40 0.343 (0.036–3.243) 0.350 1.727 (0.164–18.195) 0.649

CR 341 0.063 (0.011–0.350) 0.002 2.576 (0.275–24.138) 0.407

Race 486 0.727

Asian 12 Reference

Black or African American 58 6667525.5865 (0.000–Inf) 0.998

White 416 9938185.1691 (0.000–Inf) 0.998

Age 501 0.479

≤60 225 Reference

>60 276 1.578 (0.441–5.650) 0.484

Residual tumor 470 0.157

R0 316 Reference

R1 & R2 154 2.587 (0.693–9.654) 0.157

Zone of origin 277 0.466

Central 4 Reference

Peripheral 138 56367162.9214 (0.000–Inf) 1.000
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TABLE 2. Continued.

Characteristics Total Univariate analysis Multivariate analysis

HR (95% CI) p HR (95% CI) p

Transition 8 0.795 (0.000–Inf) 1.000

Multiple 127 94835394.6657 (0.000–Inf) 1.000

PSA (ng/mL) 444 0.007

<4 417 Reference Reference

≥4 27 10.528 (2.481–44.681) 0.001 9153146397117.3594
(967658373058.1670–
86580234615534.2031)

<0.001

Gleason score 501 0.007

6 & 7 294 Reference Reference

8 & 9 & 10 207 6.654 (1.371–32.298) 0.019 1721519.8672 (0.000–Inf) 0.990

IGF1 501 0.115

Low 250 Reference

High 251 0.306 (0.062–1.510) 0.146

SAA1 501 0.035

Low 250 Reference Reference

High 251 0.224 (0.047–1.068) 0.061 0.000 (0.000–0.000) <0.001

OPRK1 501 0.013

Low 250 Reference Reference

High 251 0.128 (0.016–1.020) 0.052 0.000 (0.000–Inf) 0.973

AMH 501 0.114

Low 250 Reference

High 251 3.219 (0.662–15.641) 0.147

HR: Hazard ratio; CI: Confidence interval; CR: Complete response: PR: Partial response; SD: Stabilization disease; PD:
Progressive disease; AMH: Anti-Mullerian Hormone; IGF1: Insulin Like Growth Factor 1; OPRK1: Opioid Receptor Kappa 1;
SAA1: Serum Amyloid A1; PSA: prostate-specific antigen.

and transforming growth factor beta receptor binding were all
enriched in MF. Furthermore, KEGG analysis revealed some
immune-related pathways.

Subsequently, the 5 genes of the prognostic model were
mapped in red letters on the KEGG pathway map. Path-
way enrichment analysis suggested that the 5-gene prognostic
model was enriched in aldosterone regulation, steroid pro-
duction, long-term depression, longevity regulatory pathways,
and Staphylococcus aureus infection, and the well-known Epi-
dermal Growth Factor Receptor (EGFR), Hypoxia Inducible
Factor 1 (HIF-1), The AMP-activated protein kinase (AMPK),
and other signaling pathways, suggesting that a variety of
cancer-related (Fig. 7E,F & Table 4). Fig. 8 shows the role of 5
genes involved in Prostate cancer, Long-term depression, En-
docrine resistance, Transforming Growth Factor Beta (TGF-
β) signaling pathway, and EGFR tyrosine kinase inhibitor
resistance.

3.8 Gene set enrichment analysis based on
a 5-gene prognostic model to predict
differences between low and high-risk
groups for prostate cancer
The potential mechanisms by which prognostic models regu-
late OS timing in PRAD patients need to be further explored.
To find the possible signaling pathways involved in the prog-
nostic model in the two risk groups, we performed GSEA
(Fig. 9, Supplementary Table 1). The KEGG high-risk group
was primarily enriched in Ribosome, Cell Cycle, Spliceosome,
Ascorbate and Aldarate Metabolism, and Base Excision Re-
pair, whereas the low-risk group was primarily enriched in
Cardiac Muscle Contraction, Hypertrophic Cardiomyopathy
HCM, Dilated Cardiomyopathy, Proximal Tubule Bicarbon-
ate Reclamation, and Primary Immunodeficiency (Fig. 9A,B).
In WikiPathways, high-risk groups were enriched in Striated
Muscle Contraction Pathway, and Extrafollicular B Cell Acti-
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FIGURE 4. The relationship between overall survival rate and gene expression of SAA1 (A), AMH (B), OPRK1 (D).
The relationship between disease-specific survival rate and gene expression of OPRK1 (C), IGF1 (F). The relationship between
progression-free interval and gene expression of IGF1 (E). AMH: Anti-Mullerian Hormone; IGF1: Insulin Like Growth Factor
1; OPRK1: Opioid Receptor Kappa 1; SAA1: Serum Amyloid A1.
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FIGURE 5. ROC curves validate diagnostic efficacy. (A) The diagnostic efficacy of the 5-gene prognostic model for prostate
cancer; (B–L) To verify the efficacy of the 5-gene prognostic model in the identification of Clinical variable outcomes of Alcohol
history, Smoker, Lymphnode neck dissection, Radiation therapy, Age, Clinical stage, Histologic grade, Clinical t stage, Pathologic
stage, Pathologic n stage, Pathologic T stage, respectively. AUC: area under the curve; AMH: Anti-Mullerian Hormone; IGF1:
Insulin Like Growth Factor 1; OPRK1: Opioid Receptor Kappa 1; SAA1: Serum Amyloid A1. DEFA5: Defensin Alpha 5; TPR:
True positive rate; FPR: False positive rate.
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FIGURE 6. Prognosticmodel is associated with prostate cancer. The overall results showed that the expression of OPRK1 in
five prognosticmodelmolecules was correlatedwith the expression of BRCA1, BRCA2 (A,B), TMPRSS2 (C), HK3 (D), AMACR
(E), SLC45A1, SLC45A3, SLC45A4 (F–H) in lollipop graph, the size and color of the circle represent significance. BRCA1:
BRCA1 DNA Repair Associated; AMH: Anti-Mullerian Hormone; IGF1: Insulin Like Growth Factor 1; OPRK1: Opioid
Receptor Kappa 1; SAA1: Serum Amyloid A1; DEFA5: Defensin Alpha 5; HK3: Hexokinase 3; TMPRSS2: transmembrane
serine endopeptidase 2; AMACR: Alpha-methylacyl-coa racemase.

vation by Sarscov2, Folate Metabolism, Selenium Micronutri-
ent Network, and Complement System (Fig. 9C,D). The high-
risk groups in the Reactome database were mostly enriched for
striated muscle contraction, CD22-mediated B-cell receptor
(BCR) regulation, clearance of heme in plasma, and creation
of initial triggers for the complement system, such as C4
and C2 activators; The low-risk group was enriched in Stri-
ated Muscle Contraction, CD22 Mediated BCR Regulation,
Scavenging of Heme from Plasma, spindle checkpoint and
sister chromatid, of C 4 and C 2 creation Activators, Initial
Triggering of Complement (Fig. 9E,F). In Persistent Identifier
(PID), the high-risk group was enriched in Polo Like Kinase
1 (PLK1), ATR Serine/Threonine Kinase (ATR), Aurora B,
Fanconi and Aurora a Pathway, while the low-risk group was
enriched in NCADHERIN, INTEGRIN3, INTEGRIN2, Inter-
leukin (IL42) pathways (Fig. 9G,H). Finally, the expression of
hub gene was confirmed by PCR (Fig. 10).

4. Discussion

Overall, we analyzed DEIRGs associated with PRAD progno-
sis by LASSO regression, with predicted prognostic models
including DEFA5, IGF1, SAA1, OPRK1 and AMH. During
cancer development, t-cell infiltration is impaired, antigen reg-
ulation is disrupted, and expression levels of immune check-
points and their ligands are elevated [24]. Hence, patients
may not benefit greatly from ICI treatment when immune
checkpoints are not the only rate-limiting step [25]. Patients
in the current study who had low risk scores had a higher
level of immune checkpoint molecules. Indirectly, the rise in
immune checkpoint levels, including PD-1 and Cytotoxic T-
Lymphocyte Associated Protein 4 (CTLA-4), in the low-risk
score group suggests pre-existing t-cell activation. Patients
with low-risk scores may therefore be more sensitive to ICI
treatment [26].

Although we elucidated the role of the 5-gene prognostic
model in predicting prognosis and verified the expression
levels of DEFA5, IGF1, SAA1, OPRK1 and AMH in tumor
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FIGURE 7. GO and KEGG enrichment analysis of 5-gene prognostic model molecules. (A–D) GO enrichment
analysis bar graph, bubble graph, chord graph and cycle graph; (E,F) Kobas database was used to analyze the KEGG pathway
enrichment results of the 5-gene prognostic model. GO: Gene Ontology; BP: Biological process; CC: Cell component; MF:
Molecular function; AMH: Anti-Mullerian Hormone; IGF1: Insulin Like Growth Factor 1; OPRK1: Opioid Receptor Kappa 1;
SAA1: Serum Amyloid A1; DEFA5: Defensin Alpha 5; TGF-β: Transforming Growth Factor Beta; cAMP: Cyclic adenosine
monophosphate.

TABLE 3. GO enrichment results of prognostic model.
Ontology ID Description adj.p
BP GO: 2000242 negative regulation of reproductive process 0.0356
BP GO: 0042698 ovulation cycle 0.0356
BP GO: 0048477 oogenesis 0.0465
BP GO: 0032612 interleukin-1 production 0.0465
BP GO: 0032652 regulation of interleukin-1 production 0.0465
CC GO: 0030133 transport vesicle 0.0033
CC GO: 0070382 exocytic vesicle 0.0215
CC GO: 0034774 secretory granule lumen 0.0215
CC GO: 0060205 cytoplasmic vesicle lumen 0.0215
CC GO: 0031983 vesicle lumen 0.0215
MF GO: 0005179 hormone activity 0.0072
MF GO: 0008083 growth factor activity 0.0072
MF GO: 0005159 insulin-like growth factor receptor binding 0.0183
MF GO: 0005158 insulin receptor binding 0.0183
MF GO: 0005160 transforming growth factor beta receptor binding 0.0183
GO: Gene Ontology; BP: Biological process; CC: Cell component; MF: Molecular function.
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TABLE 4. KEGG enrichment results of prognostic model.
Term ID Background number adj.p
Aldosterone-regulated sodium reabsorption hsa04960 37 0.004832
Ovarian steroidogenesis hsa04913 49 0.006354
Long-term depression hsa04730 60 0.007747
Longevity regulating pathway-multiple species hsa04213 62 0.008000
Staphylococcus aureus infection hsa05150 68 0.008760
p53 signaling pathway hsa04115 72 0.009266
Melanoma hsa05218 72 0.009266
Glioma hsa05214 75 0.009645
EGFR tyrosine kinase inhibitor resistance hsa01521 79 0.010150
Longevity regulating pathway hsa04211 89 0.011413
Hypertrophic cardiomyopathy (HCM) hsa05410 90 0.011540
TGF-beta signaling pathway hsa04350 94 0.012044
Dilated cardiomyopathy (DCM) hsa05414 96 0.012297
Prostate cancer hsa05215 97 0.012423
Endocrine resistance hsa01522 98 0.012549
Progesterone-mediated oocyte maturation hsa04914 99 0.012675
Inflammatory mediator regulation of TRP channels hsa04750 100 0.012801
HIF-1 signaling pathway hsa04066 109 0.013935
AMPK signaling pathway hsa04152 120 0.015320
EGFR: Epidermal Growth Factor Receptor; TGF-β: Transforming Growth Factor Beta; TPR: True positive rate; HIF-1:
Hypoxia Inducible Factor 1; AMPK: AMP-activated protein kinase.

tissues by proteomics, there are still some limitations, to be
further explored. To explore the characteristic function of
prostate cancer, AMH and OPRK1 were found to be the key
genes affecting Tumor microenvironment (TMB) and poten-
tial targets for immunotherapy. It was suggested that higher
expression of AMH was beneficial to PCA progression, and
patients’ OS was worse when the OPRK1 level was lower,
along with a higher recurrence rate in the early stage of PCA
than those with high expression of OPRK1 [23, 27]. The
onset and progression of prostate cancer may be influenced by
decreased circulation levels of the testis-derived TGF-family
peptide hormone, anti-mullerian hormone (AMH) [28]. In a
study of 1000 patients, the overall risk of prostate cancer has
been demonstrated to be correlated with prediagnostic serum
AMH levels [29]. Physiological concentrations of endogenous
AMH increased the viability of cancer cells [30]. Furthermore,
serum amyloid A1 (SAA1) is an inflammatory high-density
lipoprotein. It is also regarded as a prognostic indicator and
a predictor of cancer risk [31]. It is crucial for fatty acid
oxidation (FAO), Association of Tennis Professiona (ATP)
and cell growth in prostate cancer tissues, which are induced
by the loss of the cancer biomarkers SUN2 [32, 33]. The
inhibitory effect of the IGF1/Signal Transducer and Activa-
tor of Transcription 3 (STAT3) pathway on the invasion of
prostate cancer is well known [34]. Correlations between
IGF1 and Wnt/β-catenin signaling have also been found in
human prostate cancer samples [35]. Single-cell transcrip-
tomic analysis has shown that AR activation enhances the

mecasermin signaling pathway (IGF1) and initiates oncogenic
transformation [36]. Elevated IGF1 signaling further accu-
mulates the Wnt/β-catenin pathway in transformed cells to
promote prostate tumor development [37]. The detection rate
of DEFA5 in cancer was significantly higher in patients. In
addition to the role of defensins in the innate immune system,
which is associated with antimicrobial and immune signaling
activities, the significance of α-defensin 5 (DEFA5) in the
onset and progression of gastric cancer is being discussed in
an increasing number of studies [3, 38]. A study showed
mechanistically how DEFA5 binds to Body Mass Index (BMI)
directly, then decreases its binding at the Cyclin Dependent
Kinase Inhibitor 2A (CDKN2A) locus, and upregulates the
expression of the cyclin-dependent kinase inhibitors p16 and
p19 to inhibit stomach cancer [1, 2].

To further improve the reliability and persuasiveness of
guiding clinical strategic decisions, we incorporated expres-
sion profiles and survival data from TCGA prostate cancer
during the analysis. In addition, it was shown that several
specific DEIRGs with remarkable variations in variable risk
factors were linked to the advancement of prostate cancer
and patient prognosis. More importantly, these DEIRGs, as
molecular biomarkers, have an important role in predicting and
evaluating survival outcomes in prostate cancer.

Despite some positive results, there are still some problems.
First, this immune signature is built on a common data set.
Predictive power needs to be further tested in Randomized
controlled trials. First, we did not combine metabolomics
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FIGURE 8. KOBAS database was used to analyze the KEGG pathway of 5-gene prognostic model. (A) Prostate cancer,
(B) Long-term depression, (C) Endocrine resistance, (D) Epidermal Growth Factor Receptor (EGFR) tyrosine kinase inhibitor
resistance, (E) Transforming Growth Factor Beta (TGF-β) signaling pathway, (F) p53 signaling pathway.
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FIGURE 9. Gene set enrichment analysis based on a 5-gene prognostic model to predict differences between high-and
low-risk groups for prostate cancer. Significant enrichment entries were included in the REACTOME (A,B), WP (C), PID
(D), Kegg (E) and BIOCARTA (F) databases, respectively. KEGG: Kyoto Encyclopedia of Genes and Genomes; PID: Persistent
Identifier. ATR: Serine/Threonine Kinase; CD56: Neural Cell Adhesion Molecule 1; PID: Persistent Identifier; PLK1: Polo Like
Kinase 1; IL42: Interleukin; BCR: B-cell receptor.
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FIGURE 10. The gene expression of hub genes by PCR.AMH: Anti-Mullerian Hormone; DEFA5: Defensin Alpha 5; IGF1:
Insulin Like Growth Factor 1; OPRK1: Opioid Receptor Kappa 1; SAA1: Serum Amyloid A1.

with immunogenomics testing. In addition, the practical value
of our prognostic gene model for prostate cancer needs to
be further validated. To sum up, we comprehensively ana-
lyzed and validated 5-gene prognostic models to predict the
clinical prognosis of prostate cancer. The findings will help
to establish a reliable and referential risk assessment model
and provide new insights into immune-related research and
treatment strategies.

5. Conclusions

In this study, we constructed prognostic immunoprofiles based
on the TCGA-PRAD dataset and tested their predictive power
on both total and internal datasets. There was a significant
difference in tumor infiltrating lymphocytes between high-risk
and low-risk groups, and an immune marker composed of five
immune-related genes was an independent predictor of PRAD
patients. Patients in the low-risk category had better overall

survival and greater infiltration of immune cells in the tumor
microenvironment, which is highly correlated with clinical
outcomes but requires prospective validation.
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