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Abstract
Lung cancer is the most common human malignancy worldwide and can be divided
into different types of carcinomas depending on their pathological features. Advances in
medical science and technology have led to the identification of some lung cancer-related
marker genes, including EGFR (epidermal growth factor receptor), BRAF (B-Raf proto-
oncogene), RAS (RAS proto-oncogene, GTPase) and HER2 (human epidermal growth
factor receptor 2). However, the underlying biomarker and key genes associated with
different types of lung cancer are still poorly understood. In this study, we analyzed
a GEO (Gene Expression Omnibus) dataset and identified 28 upregulated intersection
DEGs (different expression genes) and 125 downregulated intersection DEGs among
AC (adenocarcinoma), PTC (primary typical carcinoid), PLCC (primary large cell
carcinoma), PLCNC (primary large cell lung carcinoma) and PSCLC (primary small
cell lung carcinoma). Through PPI (protein-protein interaction) network analysis, we
identified 14 genes among the DEGs, namely MFAP4 (microfibril-associated protein
4), PDZD2 (PDZ domain containing 2), FBLN1 (fibulin 1), FBLN5 (fibulin 5),
EFEMP1 (EGF containing fibulin extracellular matrix protein 1), KDR (kinase insert
domain receptor), S1PR1 (sphingosine-1-phosphate receptor 1), CAV1 (caveolin 1),
GRK5 (G protein-coupled receptor kinase 5), EDNRA (endothelin receptor type A),
EDNRB (endothelin receptor type B), CALCRL (calcitonin receptor-like receptor),
PTGER4 (prostaglandin E receptor 4), and ADRB1 (adrenoceptor beta 1), which were
found to be downregulated in different subtypes of lung cancer and associated with
poor survival outcomes. In addition, most of the screened DEGs demonstrated good
predictive ability in LUAD (lung adenocarcinoma) and LUSC (lung squamous cell
carcinoma). Among them, MFAP4 was found to promote cell proliferation while also
suppressing cell migration and angiogenesis. In summary, we propose MFAP4, PDZD2,
FBLN1, FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5, EDNRA, EDNRB, CALCRL,
PTGER4 and ADRB1 as potential prognostic markers in lung cancer patients.
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1. Introduction

Lung cancer is the leading cause of cancer-related death world-
wide. In non-small cell lung cancer (NSCLC), the importance
of genes as biomarkers is increasingly recognized for their
pivotal role in diagnosis, treatment and prognosis estimation,
gradually surpassing the significance of histological classifica-
tion [1]. Comparatively, less than half of lung adenocarcinoma
cases exhibit targeted driver gene mutations such as EGFR,
BRAF and HER2 or rearrangements involving ALK (ALK
receptor tyrosine kinase) and ROS1. However, for other
NSCLC cases lacking these specific molecular markers, par-
ticularly non-squamous NSCLC, the only treatment option is
conventional platinum-based dual therapy [2]. Despite signif-
icant advancements in chemotherapy, radiotherapy, surgery,

and immunotherapy for lung cancer, the 5-year survival rate
for NSCLC patients remains low at 23%. To address this,
comprehensive studies are necessary to uncover the molecu-
lar mechanisms underlying lung cancer and develop effective
therapeutic strategies.

Significant progress has been achieved in the field of bioin-
formatics, particularly with advancements in microarray tech-
nology, has witnessed rapid progress, which has enabled the
widespread use of high-throughput gene expression analysis
platforms to identify differentially expressed genes (DEGs) in-
volved in tumorigenesis [3, 4]. Through the application of mi-
croarray technology, an increasing number of DEGs associated
with lung cancer have been discovered [5, 6]. Nevertheless,
it is important to acknowledge that identifying DEGs through
this technology has certain limitations regarding sample size,
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TMN (Tumor, Node, Metastasis) classification, gender, eth-
nicity and other factors, which should be accounted when
interpreting the results of DEG analyses [3].
In this study, we aimed to identify key genes associated with

lung cancer by analyzing microarray data obtained from the
GEO database using bioinformatics analysis. We investigated
the relevant Gene Ontology (GO) terms and Kyoto Encyclope-
dia of Genes and Genomes (KEGG) pathways specific to lung
cancer and constructed networks to identify related key genes.
Furthermore, by analyzing data from The Cancer Genome
Atlas (TCGA) encompassing lung adenocarcinoma and lung
squamous cell carcinoma, we examined the expression of
these key genes in NSCLC and evaluated their impact on
patients’ survival. In addition, we also explored the application
of these potential candidate biomarkers in the diagnosis of
NSCLC, providing valuable insights into potential targets and
prognostic markers for enhancing the diagnosis and treatment
of lung cancer.

2. Materials and methods

2.1 PCA, volcano plot and Venn diagram
analysis
PCA (principal component analysis) was performed as
previously depicted [7]. The GEO dataset GSE1037,
which consists data on cDNA microarray containing 40,386
elements, was used to analyze the gene expression profiles of
38 surgically resected samples of lung neuroendocrine tumors
and 11 SCLC (small cell lung cancer) cell lines (accessed via:
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1037)
with the R package (limma analysis), after applying a batching
correction. PCA was used to visualize the differences between
the normal group (primary normal lung tissue, n = 19) and
the cancer group, including PTC (primary typical carcinoid, n
= 12), AC (adenocarcinoma, n = 12), PLCNC (primary large
cell neuroendocrine carcinoma, n = 8), PSCLC (primary small
cell lung carcinoma, n = 15) and PLCC (primary large cell
carcinoma, n = 14).
In the volcano plot, the vertical lines represent genes with

an absolute value of |log2(fold change)| ≥ 2, indicating up-
regulated or down-regulated DEGs, while the horizontal line
indicates a significance level of p < 0.05. Significantly up-
regulated genes are denoted by red dots, while significantly
downregulated genes are represented by blue dots. By using
a Venn diagram, we identified 28 upregulated genes and 125
downregulated genes that were differentially expressed based
on the intersection of the gene sets.

2.2 GO/KEGG pathway enrichment analysis
and protein-protein interaction analysis
The expression of 14 key genes in lung tumor and non-
tumor tissues was analyzed using the FactoMineR package
in R, and the results were visualized using heat maps.
GO-KEGG analysis (https://www.genome.jp/kegg/) was
performed as previously described [8]. The online platform
Metascape (https://metascape.org/) and R language version
4.3.1 (Beagle Scouts, Murray Hill, NJ, USA) were used for
enrichment analysis of those above-mentioned intersecting

differential genes. PPI (protein-protein interaction) analysis
was performed on the STRING online platform (https://string-
db.org/).

2.3 Correlation and cluster analysis of
differential gene expression
The correlation of key gene expression between normal lung
tissue and lung carcinoma tissue was analyzed using the clus-
terProfiler package of R language [9, 10].

2.4 GEO, GEPIA analysis and Kaplan-Meier
curve analysis
The expression of 14 DEGs was analyzed by box plot from
GSE1037. The GEPIA online software (http://gepia.cancer-
pku.cn/) was used to analyze the expression of MFAP4,
PDZD2, FBLN1, FBLN5, EFEMP1, KDR, S1PR1, CAV1,
GRK5, EDNRA, EDNRB, CALCRL, PTGER4 and ADRB1
in different types of lung cancer. The prognosis of patients
was assessed using the Kaplan-Meier curve tool to analyze
and visualize the survival data for the investigated patients
(http://kmplot.com/analysis/).

2.5 ROC curve analysis
ROC (Receiver Operating Characteristic) curves of differential
genes were analyzed using the R language based on the TCGA-
GTEX (Genotype-Tissue Expression) data. The type of data
from TCGA comprised RNAseq data, while data from GEO
were derived from cDNA microarrays.

2.6 Cell lines
A549 and SK-MES-1 cells were purchased from Procell
(Wuhan, China), cultured in DMEM (Dulbecco’s Modified
Eagle Medium) with 10% FBS (fetal bovine serum) and
penicillin-streptomycin, then incubated at 37 ℃ in a 5% CO2

(carbon dioxide) environment, following the manufacturer’s
instructions.

2.7 Western blotting assay
Western blotting analysis was performed as previously
depicted [11]. Briefly, proteins were extracted using RIPA
lysis buffer, then denatured, electrophorized, transferred,
immunoblotted and visualized using a chemiluminescent
ECL reagent, followed by immunoblotting with the following
antibodies: anti-mouse MFAP4 (1:1000, Santa, sc-398438,
USA), anti-mouse p-ERK1/2 (1:1000, Abcam, ab278538,
England), anti-mouse ERK1/2 (1:1000, Abcam, ab17942,
England), anti-mouse p38 (1:1000, Santa, sc-7972, USA),
anti-mouse p-p38 (1:1000, Santa, sc-166182, USA), anti-
mouse p-JNK (1:1000, Santa, sc-6254, USA), anti-mouse
JNK (1:1000, Santa, sc-7345, USA) and anti-mouse GAPDH
(1:1000, Santa, sc-47724, USA).

2.8 Cell proliferation, migration and
angiogenesis
Cell proliferation and migration assays were conducted fol-
lowing previously described methods [12]. The indicated cell

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1037
https://www.genome.jp/kegg/
https://metascape.org/
https://string-db.org/
https://string-db.org/
http://gepia.cancer-pku.cn/
http://gepia.cancer-pku.cn/
http://kmplot.com/analysis/


121

lines were seeded into a 96-well plate to assess cell viability at
various time points (0 h, 24 h, 48 h and 72 h). Additionally,
the same cell lines were seeded into a transwell chamber after
incubating for 24 h, following which the number of migrated
cells was counted. For angiogenesis, human umbilical vein en-
dothelial cells (HUVECs) were cultured in a medium obtained
from lung cancer cells transfectedwith the designated plasmids
for 48 h to conduct the tubule formation experiment. The
cells were washed, detached, seeded and imaged as previously
described [13].

2.9 Statistical analysis

The SPSS v22.0 software (IBM, Armonk, NY, USA) was
used for statistical analyses. The Student’s t-test and one-way
ANOVA (Analysis of variance) were performed, and data are
presented as means ± SEM (standard error of the mean) of
three independent experiments. A p-value of 0.05 or less was
considered significant.

3. Results

3.1 Analysis of differential genes DEGs in
lung cancer based on GEO data

Bioinformatics methods were applied to analyze DEGs from
GSE1037 to identify key genes related to the prognosis of
lung cancer patients. After batch correction, the data were
analyzed by PCA (Fig. 1A). The results showed significant
differences between diverse kinds of lung cancer, including
AC, PLCC, PLCNC, PSCLC and PTC, and the normal tissue
group. We analyzed the DEGs between the lung cancer and
normal group by volcano plot and identified 743 upregulated
and 769 downregulated genes in PTC, 313 upregulated and
199 downregulated genes in AC, 454 upregulated and 501
downregulated expression genes in PLCNC, 325 upregulated
and 1014 downregulated expression genes in PSCLC, and 537
upregulated and 416 downregulated genes in PLCC (Fig. 1B).
From these, 28 upregulated and 125 downregulated inter-
section DEGs were identified among the AC, PTC, PLCC,
PLCNC and PSCLC samples via Venn analysis (Fig. 1C).

FIGURE 1. Analysis of differential genes DEGs in lung cancer based on GEO data. (A) PCA was used to analyze the
difference between normal and lung cancer, including AC (adenocarcinoma), PTC (primary typical carcinoid), PLCC (primary
large cell carcinoma), PLCNC (primary large cell lung carcinoma) and PSCLC (primary small cell lung carcinoma). (B) Volcano
plot was used to assess DEGs between normal and different types of lung cancer. Blue: decreased expression genes, red:
increased expression genes, grey: no significant change expression genes. (C) Venn plot analyzed the intersection genes among
AC (adenocarcinoma), PTC (primary typical carcinoid), PLCC (primary large cell carcinoma), PLCNC (primary large cell lung
carcinoma) and PSCLC (primary small cell lung carcinoma).
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3.2 Differential gene enrichment analysis,
cluster analysis and protein interaction
network PPI analysis

Enrichment analysis was performed on the above intersection
DEGs (Fig. 2A), and the results indicated that the screened
DEGs were associated with angiogenesis, cell-substrate ad-
hesion, circulatory system and locomotion process. KEGG
enrichment analysis showed that the DEGs were mainly in-
volved in the MAPK pathway. Additionally, the PPI network
analysis identified 14 genes among the DEGs, namelyMFAP4,
PDZD2, FBLN1, FBLN5, EFEMP1, KDR, S1PR1, CAV1,
GRK5, EDNRA, EDNRB, CALCRL, PTGER4 and ADRB1
(Fig. 2B).

Next, we analyzed the expression of the selected 14 DEGs
in tumor tissues and normal tissues of lung cancer patients
and found that all were downregulated expression in lung
carcinoma tissues compared to normal lung tissues (Fig. 3A).
Moreover, the PPI analysis (Fig. 2B) demonstrated a consistent
interaction pattern among the 14 DEGs (Fig. 3B). Notably,
our analysis using R revealed that nearly all of the 14 DEGs
displayed significant correlations with each other (Fig. 3C).

3.3 Analysis of differential gene expression
in different subtypes of lung cancer from
GEO and TCGA datasets
Based on the GEO chip data GSE1037, we analyzed the ex-
pression levels of the 14 DEGs in AC, PTC, PLCC, PLCNC
and PSCLC by box plot (Fig. 4) and found no significant
difference in PDZD2 between the different subtypes of lung
cancer and the normal group. The expression of MFAP4 was
downregulated in all kinds of lung cancer except for PTC,
and PTGER4 was downregulated in different subtypes of lung
cancer, excluding PTC and PLCNC. Additionally, FBLN1,
FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5, EDNRA, ED-
NRB, CALCRL and ADRB1 were all significantly decreased in
AC, PTC, PLCC, PLCNC and PSCLC compared to the normal
group (Fig. 4).
Similarly, we used the GEPIA online platform to analyze

the expression of 14 DEGs in LUAD (T = 483, N = 347) and
LUSC (T = 486, N = 338). As shown in Fig. 5, for LUAD,
which included 483 tumor cases and 347 normal cases, and
LUSC, which comprised 486 tumor tissues and 338 normal
tissues, all of the 14 DEGs were downregulated in the LUSC
tissues compared to the normal group. Further, in LUAD
tissues, all 14 DEGs showed significantly lower expression

FIGURE 2. Differential gene enrichment analysis and protein interaction network PPI analysis. (A) GO-KEGG
enrichment analysis of the intersection DEGs (differentially expressioned genes). For GO database analysis, the functions
of genes were divided into three parts: cellular component (CC), molecular function (MF), and biological process (BP). (B)
PPI (protein-protein intreaction) network analysis of the intersection DEGs was analyzed on the Metascape online platform
(https://metascape.org/gp/index.html#/main/step1).

https://metascape.org/gp/index.html#/main/step1
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FIGURE 3. Differential gene expression correlation and cluster analysis. (A) Heatmap analysis of the expression of
MFAP4 (microfibril-associated protein 4), PDZD2 (PDZ domain containing 2), FBLN1 (fibulin 1), FBLN5 (fibulin 5), EFEMP1
(EGF containing fibulin extracellular matrix protein 1), KDR (kinase insert domain receptor), S1PR1 (sphingosine-1-phosphate
receptor 1), CAV1 (caveolin 1), GRK5 (G protein-coupled receptor kinase 5), EDNRA (endothelin receptor type A), EDNRB
(endothelin receptor type B), CALCRL (calcitonin receptor-like receptor), PTGER4 (prostaglandin E receptor 4), and ADRB1
(adrenoceptor beta 1) between normal and carcinoma tissues. (B) PPI among MFAP4, PDZD2, FBLN1, FBLN5, EFEMP1,
KDR, S1PR1, CAV1, GRK5, EDNRA, EDNRB, CALCRL, PTGER4 and ADRB1 was analyzed on the STRING online platform.
(C) Correlation of MFAP4, PDZD2, FBLN1, FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5, EDNRA, EDNRB, CALCRL,
PTGER4 and ADRB1 determined by R language analysis.
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FIGURE 4. Expression of key genes in different subtypes of lung cancer. Box plot was used to analyze the expression of
MFAP4 (microfibril-associated protein 4), PDZD2 (PDZ domain containing 2), FBLN1 (fibulin 1), FBLN5 (fibulin 5), EFEMP1
(EGF containing fibulin extracellular matrix protein 1), KDR (kinase insert domain receptor), S1PR1 (sphingosine-1-phosphate
receptor 1), CAV1 (caveolin 1), GRK5 (G protein-coupled receptor kinase 5), EDNRA (endothelin receptor type A), EDNRB
(endothelin receptor type B), CALCRL (calcitonin receptor-like receptor), PTGER4 (prostaglandin E receptor 4), and ADRB1
(adrenoceptor beta 1) in different types of lung cancer from GSE1037.

levels compared to the normal group, except for EDNRA.
Collectively, our data indicate that these 14 DEGs were

downregulated in different subtypes of lung cancer.

3.4 Influence of DEGs on lung
adenocarcinoma and lung squamous cell
carcinoma survival
Next, we analyzed the relationship between the expression
of the 14 DEGs and survival rates. As shown in Fig. 6,
for LUAD, a low expression of MFAP4, PDZD2, FBLN1,
FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5, EDNRA,
EDNRB, CALCRL, PTGER4 and ADRB1 were related with
poor survival. Comparatively, for LUSC, only MFAP4 and
PTGER4 were positively correlated with survival rate, and
there was no difference between other gene expressions and
survival (Fig. 6 and Supplementary Fig. 1).

3.5 Based on the TCGA database to analyze
the value of differential genes in lung
cancer diagnosis
The area under the ROC curve (AUC) of the nomogram of the
training data set was AUC ≥0.9, with a CI >0.9, indicating

good predictive ability in the TCGA cohort test, as a high
AUC (≥0.9) represents high prediction accuracy. For LUAD
diagnosis, MFAP4, FBLN1, FBLN5, EFEMP1, S1PR1,
CAV1, GRK5, EDNRB, CALCRL, PTGER4 and ADRB1
exerted good predictive ability in the TCGA cohort test
(Fig. 7). Comparatively, for LUSC diagnosis, only MFAP4,
FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5, EDNRB,
CALCRL and ADRB1 exerted good predictive ability in the
TCGA cohort test (Fig. 7). Further, the ROC curves of the
nomogram of the training data set for PDZD2, EDNRA and
KDR in LUAD, PDZD2, PTGER4, FBLN1 and EDNRAwere
AUC <0.9 (Supplementary Fig. 2).

3.6 Effects of upregulated MFAP4 on
angiogenesis and MAPK pathway in lung
cancer cells
According to the GO/KEGG enrichment analysis, differential
genes were significantly enriched in angiogenesis, cell adhe-
sion movement and MAPK pathway, further confirming the
role of MFAP4 at the cell level. From the above-screened
genes, MFAP4 had the most differential expression and was
the most significant marker associated with patient survival
and was thus selected for validation. As shown in Fig. 8A,
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FIGURE 5. Analysis of differential gene expression in lung adenocarcinoma and lung squamous cell carcinoma
based on the TCGA database. GEPIA (gene expression profiling interactive analysis) online software was used to analyze
the expression of MFAP4 (microfibril-associated protein 4), PDZD2 (PDZ domain containing 2), FBLN1 (fibulin 1), FBLN5
(fibulin 5), EFEMP1 (EGF containing fibulin extracellular matrix protein 1), KDR (kinase insert domain receptor), S1PR1
(sphingosine-1-phosphate receptor 1), CAV1 (caveolin 1), GRK5 (G protein-coupled receptor kinase 5), EDNRA (endothelin
receptor type A), EDNRB (endothelin receptor type B), CALCRL (calcitonin receptor-like receptor), PTGER4 (prostaglandin E
receptor 4), and ADRB1 (adrenoceptor beta 1) in LUAD (lung adenocarcinoma) and LUSC (lung squamous cell carcinoma).
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FIGURE 6. The influence of differential genes on the survival and prognosis of lung adenocarcinoma (LUAD) and lung
squamous cell carcinoma (LUSC). Kaplan-Meier plot analysis was performed to determine the relationship between key gene
expression and survival in LUAD and LUSC. p < 0.05.

MFAP4 expression was decreased in A549 and SK-MES-1
cells compared with BEAS-2B cells. MFAP4 overexpression
inhibited cell proliferation in A549 and SK-MES-1 cells com-
pared to the control cell lines. The knockdown of MFAP4
induced cell proliferation in the indicated cell lines (Fig. 8B)
[14]. Moreover, cell migration was decreased in A549 and
SK-MES-1 cells following transfection with MFAP4, while it
was increased in MFAP4 deficient A549 and SK-MES-1 cell
lines (Fig. 8C). In addition, conditioned medium fromMFAP4
overexpression reduced angiogenesis in HUVECs cell lines,
and the knockdown of MFAP4 facilitated angiogenesis in HU-
VECs cell lines (Fig. 8D). Mechanistically, the overexpression
ofMFAP4 suppressed the phosphorylation of ERK1/2, p38 and
JNK (c-Jun N-terminal kinases) in A549 and SK-MES-1 cells.
MFAP4 deficiency induced the expression of p-ERK1/2, p-p38
and p-JNK in A549 and SK-MES-1 cell lines (Fig. 8E). Col-
lectively, these data suggest that MFAP4 negatively regulates
cell proliferation, migration and angiogenesis.

4. Discussion

Lung cancer is a highly prevalent and deadly disease world-
wide, causing an estimated 1.6 million deaths annually [15].
Most lung cancer cases are classified as NSCLC, which is
associated with low survival rates [16]. The complexity,
histopathology, and clinical features of lung cancer make it
challenging to understand the underlying mechanisms of its
development and progression [17]. In this study, we used
bioinformatics methods and screened 14 significant DEGs,
including MFAP4, PDZD2, FBLN1, FBLN5, EFEMP1, KDR,
S1PR1, CAV1, GRK5, EDNRA, EDNRB, CALCRL, PTGER4
and ADRB1, in different lung cancer subtypes, which was
found to be involved in angiogenesis, cell adhesion and lo-
comotion pathways. In addition, the correlated DEGs were
downregulated in lung cancer and positively associated with
patient survival.
Pulmonary neuroendocrine tumors are commonly encoun-
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FIGURE 7. Significance of differential genes from the TCGA database in lung cancer diagnosis. ROC (receiver operating
characteristic) curve analysis was used to assess the accuracy of each prognostic gene in different types of lung cancer. AUC (Area
Under the ROC Curve) ≥0.9, CI (confidence interval): 0.8–0.9.

tered in surgical pathology and can be classified into four
types, namely primary typical carcinoid (TC), atypical car-
cinoid, small cell lung cancer (SCLC) and large cell neu-
roendocrine carcinoma (LCNEC). Pulmonary neuroendocrine
tumors account for approximately 20% of all primary lung
tumors, encompassing classic carcinoid, atypical carcinoid,
small cell carcinoma and large cell neuroendocrine carcinoma,
and approximately 25% of neuroendocrine tumors [18]. The
diagnosis of pulmonary neuroendocrine tumors presents chal-
lenges due to morphological similarities with other entities.
Firstly, identifying their neuroendocrine characteristics can be
challenging, especially in biopsies with limited tissue samples
and intraoperative frozen sections. Secondly, distinguishing
true mitosis and nuclear pyknosis can be challenging, and focal
necrosis may be easily overlooked, leading to difficulties in
classifying tumors into distinct categories. Thirdly, clinically
differentiating primary tumors from metastases may not al-
ways be evident. The classification criteria are specifically
designed for primary neuroendocrine tumors of the lung, and it
remains unclear how these criteria apply to metastatic tumors.
In this present study, bioinformatics analysis was performed to
analyze the common intersected DEGs in five subtypes of lung
cancers (AC, PTC, PLCC, PSCLC, PLCNC).

Cancer is characterized by its high viability, metastatic po-
tential and easy relapse. Therefore, research efforts often
focus on understanding the role of DEGS in cell prolifera-
tion, migration, invasion and apoptosis in different kinds of
cancer. Similarly, we also demonstrated that the selected
DEGs were involved in angiogenesis, cell adhesion and loco-
motion pathways, which indicated their important role in the
progression and development of lung cancer. Here, MFAP4,
PDZD2, FBLN1, FBLN5, EFEMP1, KDR, S1PR1, CAV1,
GRK5, EDNRA, EDNRB, CALCRL, PTGER4 and ADRB1
were associated with tumorigenesis by GO-KEGG enrichment
analysis.

LUAD and LUSC are the two most common types of
NSCLC, and LUSC is the main pathological type of lung
malignancy [19–21]. Currently, less than 10% of patients with
advanced metastatic LUSC can live more than 5 years [22].
A previous study demonstrated that CEP55 is a diagnostic
marker and independent prognostic factor in LUAD and
LUSC [23]. The downregulated expression of miR-126-3p
was associated with the occurrence and progression of LUAD
[24]. GPR115 strongly correlated with poor prognosis of
LUAD but not LUSC [25]. High expression of GSDMD
indicated a poor prognosis in LUAD but not in LUSC
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FIGURE 8. Effects of upregulated MFAP4 on angiogenesis and MAPK pathway in lung cancer cells. (A) The expression
of MFAP4 was assessed in BEAS-2B, A549 and SK-MES-1 via western blotting. (B) A549 and SK-MES-1 were divided into
four groups (Control, MFAP4, shNC and shMFAP4) depending on different plasmids transfection. Cell proliferation of the cell
line was assessed by MTT assay. (C) A549 and SK-MES-1 were transfected with the indicated plasmids, and transwell assay
was performed to assess cell migration with quantitative data attachment. (D) Human umbilical vein endothelial cells (HUVECs)
were cultured with a transfected medium of lung cancer cells to conduct tubule formation experiments with quantitative data
attachment. (E) The related protein expression was measured by western blotting. Quantitative protein expression (MFAP4,
p-ERK1/2, p-p38, and p-JNK (c-Jun N-terminal kinases)) data is attached. Error bars represent data from three independent
experiments (mean ± SD). ##p < 0.01. **p < 0.01. #compared to the control group. *compared to the shNC group.
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[26]. Similarly, we found that MFAP4 and PTGER4 were
associated with the survival rate of LUSC patients, while the
expression of MFAP4, FBLN1, FBLN5, EFEMP1, KDR,
S1PR1, CAV1, GRK5, EDNRB, CALCRL and ADRB1 was
positively correlated with the survival of LUAD patients.
However, the underlying function of these DEGs in LUSC
and LUAD needs further research. Generally, MFAP4 was
identified as a tumor suppressor in human cancers, with its
overexpression significantly associated with better prognosis
in breast cancer and reported to be a downstream target gene
regulated by miR-147b, exerting anti-proliferation function in
LUAD cell lines [14, 27]. Moreover, Han et al. [28] reported
that the C8orf34-as1/miR-671-5p/MFAP4 regulatory cascade
played a critical role in LUAD cell migration. Here, we also
confirmed the same role of MFAP4 in LUSA and LUAD.
However, the underlying molecular mechanism of MFAP4 in
lung cancer progression needs more research.

5. Conclusions

Herein, we demonstrated that MFAP4, PDZD2, FBLN1,
FBLN5, EFEMP1, KDR, S1PR1, CAV1, GRK5,
EDNRA, EDNRB, CALCRL, PTGER4 and ADRB1
were downregulated in lung cancer and associated with
poor survival, indicating their potential as hallmark genes in
predicting the prognosis of different subtypes of lung cancers.
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