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Abstract
Ferroptosis is intimately correlated with the development of cancers. We aimed to
identify ferroptosis-related prognostic signatures for prognosis prediction of prostate
adenocarcinoma (PRAD). The expression profile and clinical data of patients were from
The Cancer Genome Atlas Program (TCGA) database. The Cox regression and Lasso
analyses were utilized to construct a multigene signature, and the Kaplan-Meier (K-
M), receiver operating characteristic (ROC), and decision curve analysis (DCA) curves
were used to validate the predictive effect. Additionally, pathway enrichment analyses
were performed to explore the potential mechanism associated with biomarkers. In
this study, 41 ferroptosis-related genes (FRGs) were differentially expressed between
PRAD and normal tissues. Then, we finally constructed a risk model consisting
of 6 signatures (Transferrin Receptor (TFRC), Ferritin Heavy Chain 1 (FTH1), Poly
(RC) Binding Protein 2 (PCBP2), Acyl-CoA Synthetase Long Chain Family Member
3 (ACSL3), Prion Protein (PRNP), and Lysophosphatidylcholine Acyltransferase 3
(LPCAT3)) among 41 biomarkers. The K-M, ROC, and DCA curves all validated
the fine predictive performance of our prognostic signature. We also revealed the
significant clinical value of each signature in PRAD. The enrichment analysis suggested
the correlation of these genes with the calcium signaling pathway, Transforming Growth
Factor Beta 1 (TGF-β), and Wingless-Type MMTV Integration Site Family (WNT)
pathways, implying that these genes might be involved in the migration of PRAD. In
conclusion, the 6-gene ferroptosis-related signature could serve as a novel biomarker
for predicting the prognosis in PRAD. Their function in cancer migration needs further
investigation.
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1. Introduction

Prostate adenocarcinoma (PRAD) is a kind of frequently diag-
nosed cancer in men in many countries, especially in Europe,
Australia andAmerica [1]. Although themolarity of PRADde-
creased over several years, its molarity is still high in the world
[1]. At present, at least 20% of patients diagnosed with PRAD
and undergone radical prostatectomy, brachytherapy or other
therapies may experience biochemical recurrence during the
follow-up period [2–4]. Early diagnosis and treatment could
reduce mortality rates in patients diagnosed with PRAD [5],
but most patients were diagnosed with advanced or metastatic
PRAD because of the uncommon screening [6]. Thus, it
is imperative to identify new biomarkers and establish the
prognosis model.

Recently, some studies showed that ferroptosis could in-
hibit the cell proliferation to regulate the progression of can-
cers [7], including PRAD [8]. Ferroptosis is an iron ion-

induced cell death which is varied from other programmed
cell death including apoptosis, cell necrosis, autophagy, and
their different characteristics was presented in the aspect of
morphology, biochemistry and genetics [9, 10]. Some stud-
ies revealed that ferroptosis was correlated to the increasing
content of peroxidation of phospholipids and reactive oxy-
gen species (ROS), which were mainly regulated by Glu-
tathione peroxidase (GPX4) and solute carrier family 7 mem-
ber 11 (SLC7A11) [9]. In many cancers, erastin and RAS-
selective lethal 3 (RSL3) showed a promising anti-cancer ac-
tivity, because they could respectively decrease the expression
of SLC7A11 and GPX4 [11, 12]. Ghoochani et al. [9]
identified that erastin and RSL3 inhibited tumor growth in vivo
and cell migration in vitro. Besides, Bordini et al. [13] claimed
that the PRAD cells with high iron sensitivity could result in
cell membrane protein damage. On the other hand, Butler et
al. [14] demonstrated that down-regulation of 2,4-Dienoyl-
CoA Reductase 1 (DECR1) in PRAD cells could suppress
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the proliferation and migration of cells through increasing
the content of cellular polyunsaturated fatty acids to enhance
mitochondrial oxidative stress and lipid peroxidation, which
eventually caused the promotion of ferroptosis. These results
suggested that ferroptosis play a vital role in the development
and prognosis in PRAD.
At present, the signatures and risk model based on ferropto-

sis related genes (FRGs) were widely applied in the prediction
of many cancers [15–17]. Moreover, these models showed
a great prediction value. Thus, in our study, we aimed to
screen out FRGs and established a prognosis model to predict
the progression free interval (PFI) of PRAD. Furthermore, we
explore the potential molecule mechanism of each signature.
This study provided useful biomarkers for PRAD and revealed
the possible pathogenic mechanism, which laid the foundation
for further research.

2. Methods

2.1 Data collection
The gene expression profile and correspond-
ing clinical information of patients diagnosed
with PRAD were collected from The Cancer
Genome Atlas (TCGA, https://www.cancer.gov/about-
nci/organization/ccg/research/structural-genomics/tcga).
Additionally, 64 FRGs were collected from PathCard.

2.2 The identification of FRGs
We assessed the difference in expression of 64 FRGs in the
PRAD samples compared with the normal samples through
the R package t.test function, and the p.adjust function was
applied to determine the false discovery rate (FDR) of each
gene. FRGs with p-value < 0.05 were enrolled in the further
analyses.

2.3 Construction of prediction model based
on FRGs
Firstly, we executed univariate Cox analysis to determine
FRGs which were significantly related to the progression-free
interval (PFI) time by R package survival. Then, we integrated
the PFI time, status and expression, and executed the Lasso
regression analysis with the R package glmnet. Subsequently,
we conducted the multivariate Cox regression analysis to
filter genes which could independently predict the prognosis.
Based on the Cox coefficient and gene expression value, we
build a prediction model.

2.4 Performance assessment of the
prediction model
The receiver operating characteristic (ROC) is a typicalmethod
for the validation of the prognosis model. We performed the
ROC analysis to explore the performance of our risk model
for predicting survival by using R package pROC (version
1.17.0.1), then area under the curve (AUC) and the confidence
interval were evaluated by using ci function of pROC. Addi-
tionally, we also used decision curve analysis (DCA) to assess
the performance of our prognosis model by R package ggDCA.

2.5 Single-sample gene set enrichment
analysis (ssGSEA)
We obtained the c2.cp.kegg.v7.4.symbols.gmt subset
from the molecular signatures database (www.gsea-
msigdb.org/gsea/downloads.jsp) to calculate the activity
score of 187 Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathways by Single-sample gene set enrichment
analysis (ssGSEA). The minimum gene was set to 5, while
the maximum gene was set to 5000. After the enrichment
score of each sample in each gene set was calculated, the
enrichment score matrix was obtained. Then, we evaluated
the relationship between our risk model and the 187 pathway
scores by the Pearson method.

2.6 Gene set enrichment analysis (GSEA) on
each signature
We also executed the GSEA on each signature within the
risk model for exploring the potential mechanism. The gene
sets “c5.go.v7.4.symbols” and “c2.cp.kegg.v7.4.symbols”
were obtained from the MSigDB database (https://www.gsea-
msigdb.org/gsea/msigdb). The R package “clusterProfiler”
was used to carry out GSEA.

2.7 Statistical analysis
The statistical analysis was performed in SPSS 25 (IBMCorp.,
Armonk, NY, USA). For quantitative data, the comparison be-
tween the two groups was evaluated by independent sample t-
test. Log-rank test was applied to assess the survival difference
between the 2 groups, and the Pearson test was used for the
correlation analysis between 2 quantitative variables. p< 0.05
was considered statistically significant.

3. Results

3.1 The expression of FRGs in PRAD
Firstly, we explored the expression of each FRGs in the PRAD
group in comparison with the normal group. As can be seen
from Fig. 1, 17 FRGs expressions were markedly upregulated,
while 24 FRGs expression level were markedly lower in the
PRAD group than the control group (p < 0.05). Then the 41
genes were enrolled in further analyses.

3.2 Establishment and validation of the risk
model
Then, univariate Cox regression analysis was used to filter the
significant genes closely correlatedwith the PFI of patients. As
presented in Fig. 2, 16 genes were remarkably correlated with
the PFI time of patients diagnosed with PRAD (all p < 0.05).
In order to filter the more valuable biomarkers, we performed
the Lasso regression analysis to remove the redundant genes.
It was obvious that the optimal Lasso model was determined
when lambda value was 0.04 (Fig. 3A), and 11 genes were
screened out by 10-fold cross-validation (Fig. 3B).
Next, the multivariate Cox regression analysis was used

to assess the independent prognostic role of signatures in
PRAD. The results showed that 6 genes could independently
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FIGURE 1. The expression of 64 FRGs in tumor and normal tissues. *p < 0.05, **p < 0.01, ***p < 0.001.

predict the prognosis of PRAD, namely TFRC, FTH1, PCBP2,
ACSL3, PRNP and LPCAT3 (Table 1). Based on multivariate
Cox coefficients and expression value, a risk model was estab-
lished. The 6-signature risk score = 0.108 × TFRC + 0.007 ×
FTH1 + 0.026 × PCBP2 − 0.007 × ACSL3 − 0.021 × PRNP
− 0.074 × LPCAT3.

After risk scores of all samples were determined, we vi-
sualized risk score distribution among all samples (Fig. 3C).
It was obvious that the most death was located in high-risk
areas, which indicated that this risk model could efficiently
distinguish the high and low survival probability of patients
with PRAD.

Next, ROC and DCA curves were applied to evaluate our
risk model. According to Fig. 4A, the AUC areas of the model
were respectively 0.75, 0.74 and 0.68 at 1, 3 and 5 years.

Additionally, the DCA curve was used to graphically reveal
the clinical utility of the prediction model. As can be seen
from Fig. 4B, the prediction model achieved more benefits
within a certain range of high risk thresholds. Moreover, the
Kaplan-Meier (K-M) curve identified that a low risk score
was remarkably associated with a good prognosis in PRAD
(Fig. 4C).

Besides, we compared our risk model with other signatures.
Li et al. [18] constructed a 2-gene signature PFI predic-
tion model. We determined the risk scores of all samples
and performed the ROC and DCA based on their risk score
(Fig. 4D,E). As shown in Fig. 4D, AUC areas of the 2-gene
signature model were respectively 0.68, 0.74 and 0.69 at 1, 3,
5 years. Meanwhile, the results of DCA demonstrated that our
prediction model had a greater clinical utility compared with
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TABLE 1. Univariate and multivariate Cox regression analysis of 6 genes.
Univariate Multivariate

HR (95% CI) p-value HR (95% CI) p-value
TFRC 1.125 3.08 × 10−5 1.115 2.44 × 10−4

FTH1 1.008 1.15 × 10−4 1.007 0.003
PCBP2 1.033 0.019 1.027 0.039
ACSL3 0.991 0.027 1.027 0.015
PRNP 0.985 0.042 0.979 0.004
LPCAT3 0.943 0.043 0.928 0.027
HR: Hazard Ratio; CI: Confidence Interval; TFRC: Transferrin Receptor; FTH1: Ferritin Heavy Chain 1 (FTH1),
PCBP2: Poly(RC) Binding Protein 2; ACSL3: Acyl-CoA Synthetase Long Chain Family Member 3; PRNP: Prion
Protein; LPCAT3: Lysophosphatidylcholine Acyltransferase 3.

FIGURE 2. Univariate Cox regression analysis on 41 FRGs.

the 2-gene signature model. Additionally, the low risk score
group also showed better prognosis than high risk score group
in 2-gene signature model (Fig. 4F). The results supported the
favorable prediction performance of our 6-gene model.

3.3 Correlation of risk score with clinical
characteristics
Besides, we assessed the correlation between clinical charac-
teristics and risk scores. According to Fig. 5A–F, the risk score
was intimately correlated with clinical characteristics. The risk
score was evidently increased in the older (age ≥60), T3 +
T4, N1 and M1 groups in contrast to the younger (age <60),
T1 + T2, N0, M0 groups. Besides, in the aspect of residual
tumor, the risk score was observably lower in R1 stage than
R0 stage, followed by an obvious decrease in the R2 stage in
comparison with the R1 stage (p< 0.05). Furthermore, the risk
scorewas higher in the patients with the number of lymphnodes

more than 15 compared with the patients with the number of
lymphnodes less than 15.

3.4 Potential mechanism exploration
To unveil the relationship between the risk score and biolog-
ical pathway, we first calculated the ssGSEA scores of every
PRAD sample according to the gene expression profile. Then,
we determined the correlation between risk score and biolog-
ical pathway. From Fig. 6, it was obvious that risk score was
evidently and negatively related to propanoate metabolism,
lysine degradation, long term depression, adherens junction,
vasopressin regulated water reabsorption, long term potenti-
ation, gap junction and valine leucine and isoleucine degra-
dation, while risk score was evidently and positively related
base excision repair and DNA replication, which indicated that
these pathways were closely related to tumor development.
We further explored the detailed function of each signature
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FIGURE 3. Lasso analysis of FRGs. (A) The lambda value and corresponding partial likelihood values for the prognosis
model. (B) 11 FRGs were screened out in the optimal lambda. (C) Distribution of risk score, survival status and the expression
of the 6 genes.

FIGURE 4. The validation and comparison of the 6-signature prediction model. (A) The ROC curves of the 6-signature
prediction model. (B) The DCA curves of the 6-signature prediction model. (C) The correlation of risk score and prognosis status
in the 6-gene signature prediction model. (D) The ROC curves of the 2-gene signature prediction model. (E) The DCA curves
of the 2-gene signature prediction model. (F) The correlation of risk score and prognosis status in the 2-gene signature prediction
model.
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FIGURE 5. The correlation between clinical characteristics and risk score. (A) age. (B) T stage. (C) N stage. (D) M stage.
(E) residual tumor. (F) number of lymphnodes. Younger indicated the age <60, and older indicated age ≥60.

FIGURE 6. The correlation between risk score and KEGG pathways. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <

0.001.
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FIGURE 7. The enriched pathway analysis by GSEA in PRAD. (A) TFRC. (B) FTH1. (C) PRNP. (D) PCBP2. (E) ACSL3.
(F) LPCAT3.
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FIGURE 8. The expression and prognostic value analyses of each signature. (A) The expression of 6 signatures in the
PRAD group in comparison with the normal group. (B–F) The protein level of signatures in PRAD.
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FIGURE 9. The prognostic value analyses of each signature in the PFI of PRAD. (A–F) The correlation between the
expression of every signature, namely TFRC, FTH1, PCBP2, ACSL3, PRNP and LPCAT3, and PFI in patients with PRAD.

in PRAD by GSEA. The significantly enriched pathways were
shown in Fig. 7A–F. It followed that most pathways were posi-
tively related to the risk score, such as cell adhesion molecules
cams, calcium signaling pathway and transforming growth
factor (TGF) beta signaling pathway, which could promote the
development of tumors. It indicated that the imbalance of these
pathways was intimately associated with cancer development.

3.5 The expression and potential clinical
value of 6 signatures in PRAD
As presented in Fig. 8A, TFRC, FTH1 and PRNP were sig-
nificantly downregulated, while PCBP2, ACSL3 and LPCAT3
were significantly upregulated in PRAD in comparison with
the normal group (p < 0.05). Although the protein levels
of LPCAT3 were not detected in The Human Protein Atlas
(HPA), the abnormal protein levels of other genes were similar
in tumor and normal tissues (Fig. 8B–F). Survival analysis
(Fig. 9A–C) identified that high expressions of TFRC, FTH1
and PCBP2 were closely correlated with poor prognosis. On
the contrary, the low expressions of ACSL3, PRNP and LP-
CAT3 were closely related to the poor prognosis (Fig. 9D–F).

4. Discussion

Ferroptosis is an iron-dependent form of regulated cell death,
which is induced by the toxic build-up of lipid peroxides
on cellular membranes [19]. Because of the unique mecha-
nism and morphology, most researches attached importance
to ferroptosis in tumor research recently. In this study, we
detected significant ferroptosis-related signatures related to the

prognosis of PRAD and established a 6-gene risk model. The
ROC, DCA and K-M analyses demonstrated the favorable
performance of the 6-gene model for predicting the progno-
sis. Subsequently, we explored the detailed function of each
signature within the model.
TFRC (transferrin receptor) is an important participant in

intracellular iron transport [20]. The study has indicated that
yes-associated protein (YAP) can increase the iron content in
hepatocellular carcinoma cell by upregulating expression of
TFRC resulted from O-GlcNAcylation [21]. Huang et al. [22]
found that TFRC promoted the epithelial ovarian cancer cell
proliferation and metastasis. Besides, it also revealed that high
TFRC expression was negatively associated with the immune-
related pathways, which implied the risk of tumor immune
escape and migration. Down-regulation of FTH1 (ferritin
heavy chain 1) has been found to be a key determinant for
baicalin-induced ferroptosis [23]. Ali et al. [24] found that
FTH1 exerted significant antigrowth effects in breast cancer.
We identified that upregulated expression of FTH1 was re-
lated to the poor prognosis, which may be contributed to the
regulation of the classically activated macrophages (CAMs)
and extracellular matrix (ECM). Besides, high expression of
PRNP (prion protein) predicted a poor prognosis of gastric
cancer [25]. However, Hu et al. [26] found that down-
regulated PRNP facilitated the proliferation and invasion of
ovarian cancer cells. This study identified that PRNP high
expression was favorable to the prognosis of PRAD, which
may be associated with the inhibition of the migration-related
pathways.
For PCBP2 (bind poly (rC) binding protein 2), previous
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studies had demonstrated its oncogenic role in glioma [27],
gastric cancer [28], and pancreatic cancer [29]. This study also
confirmed its unfavorable prognostic impact in PARD. Path-
way analysis found that PCBP2 high expression activated the
calcium signaling pathway and fatty acid metabolism, which
also suggested the risk of cancer migration. ACSL3 (acyl-CoA
synthetase long-chain 3) is an androgen-responsive gene and
previous studies revealed ACSL3 expression was upregulated
in a variety of cancers [30]. In our study, high expression
of ACSL3 was associated with a better prognosis of PRAD,
whichmay be associatedwith the inhibition of the tricarboxylic
acid (TCA) cycle and migration-related pathways. LPCAT3
(Lysophosphatidylcholine acyltransferase 3) is regulated by
the liver X receptor and have a vital effect on lipoprotein pro-
duction [31]. Ke et al. [32] had indicated that LPCAT3 could
effectively predict the prognosis of acute myeloid leukemia
and related to ferroptosis. In this study, patients with high
expression of LPCAT3 had a better prognosis, which may be
related to the inhibition of cancer-related pathways.
These researches have confirmed the importance of the 6

signatures selected in this study. All the signatures were
significantly correlated with the migration-related pathways.
The detailed regulation of these signatures in the progression
of PRAD needs further investigation.

5. Conclusions

We determined 41 differentially expressed FRGs between
PRAD and normal tissues. Based on the further univariable
Cox regression, Lasso, and multivariable Cox regression
analyses, a 6-signature model was finally constructed for
prediction of PFI in PRAD. We then confirmed the favorable
prediction performance of our risk model by ROC, DCA, and
K-M analysis. The pathway enrichment analyses implied
that the 6 signatures might be engaged in the migration of
cancer cells. This study provided the significant biomarkers
for PRAD, and the detailed function in PRAD progression
needs further verification.
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